6A, 28V_{IN} High Efficiency DC/DC µModule ## **FEATURES** - Complete Switch Mode Power Supply - Wide Input Voltage Range: 4.5V to 28V - 6A DC, Typical 8A Peak Output Current - 0.6V to 5V Output Voltage - 1.5% Output Voltage Regulation - Ultrafast Transient Response - Parallel µModule[™] DC/DC Converters - Current Mode Control - Pin Compatible with the LTM4600 and LTM4602 - Up to 92% Efficiency - Programmable Soft-Start - Output Overvoltage Protection - Optional Short-Circuit Shutdown Timer - Pb-Free (e4) RoHS Compliant Package with Gold-Pad Finish - Small Footprint, Low Profile (15mm × 15mm × 2.8mm) LGA Package # **APPLICATIONS** - Telecom and Networking Equipment - Servers - Industrial Equipment - Point of Load Regulation **Δ7**, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. μModule is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents including 5481178, 6100678, 6580258, 5847554, 6304066. # DESCRIPTION The LTM®4602HV is a complete 6A, DC/DC step down power supply with up to 28V input operation. Included in the package are the switching controller, power FETs, inductor, and all support components. Operating over an input voltage range of 4.5V to 28V, the LTM4602HV supports an output voltage range of 0.6V to 5V, set by a single resistor. This high efficiency design delivers 6A continuous current (8A peak), needing no heat sinks or airflow to meet power specifications. Only bulk input and output capacitors are needed to finish the design. The low profile package (2.8mm) enables utilization of unused space on the bottom of PC boards for high density point of load regulation. High switching frequency and an adaptive on-time current mode architecture enables a very fast transient response to line and load changes without sacrificing stability. Fault protection features include integrated overvoltage and short circuit protection with a defeatable shutdown timer. A built-in soft-start timer is adjustable with a small capacitor. The LTM4602HV is packaged in a thermally enhanced, compact (15mm × 15mm) and low profile (2.8mm) over-molded Land Grid Array (LGA) package suitable for automated assembly by standard surface mount equipment. For the 4.5V to 20V input range version, refer to the LTM4602. # TYPICAL APPLICATION #### 6A µModule Power Supply with 4.5V to 28V Input ## Efficiency vs Load Current with $24V_{IN}$ (FCB = 0) # **ABSOLUTE MAXIMUM RATINGS** #### (Note 1) | FCB, EXTV _{CC} , PGOOD, RUN/SS, V _{OUT} 0.3V to 6 | |---| | V _{IN} , SV _{IN} , f _{ADJ} | | V _{OSET} , COMP | | Operating Temperature Range (Note 2)40°C to 85°C | | Junction Temperature125° | | Storage Temperature Range55°C to 125°C | # PACKAGE/ORDER INFORMATION Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. **ELECTRICAL CHARACTERISTICS** The \bullet denotes the specifications which apply over the -40° C to 85° C temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C, $V_{IN} = 12$ V. External $C_{IN} = 120\mu$ F, $C_{OUT} = 200\mu$ F/Ceramic per typical application (front page) configuration. | | CONDITIONS | | MIN | TYP | MAX | UNITS | |---------------------------------|---|----------------|---|------------------------------|----------------|-----------------------------| | Input DC Voltage | AbsMax 28V for Tolerance on 24V Inputs | • | 4.5 | | 28 | V | | Output Voltage | FCB = 0V
V _{IN} = 5V or 12V, V _{OUT} = 1.5V, I _{OUT} = 0A | • | 1.478
1.470 | 1.50
1.50 | 1.522
1.530 | V | | ns | | | | | | | | Under Voltage Lockout Threshold | I _{OUT} = 0A | | | 3.4 | 4 | V | | Input Inrush Current at Startup | I _{OUT} = 0A, V _{OUT} = 1.5V, FCB = 0
V _{IN} = 5V
V _{IN} = 12V
V _{IN} = 24V | | | 0.6
0.7
0.8 | | A
A
A | | Input Supply Bias Current | I _{OUT} = 0A, EXTV _{CC} Open V _{IN} = 12V, V _{OUT} = 1.5V, FCB = 5V V _{IN} = 12V, V _{OUT} = 1.5V, FCB = 0V V _{IN} = 24V, V _{OUT} = 2.5V, FCB = 5V V _{IN} = 24V, V _{OUT} = 2.5V, FCB = 0V Shutdown, RUN = 0.8V, V _{IN} = 12V | | | 1.2
42
1.8
36
50 | 100 | mA
mA
mA
mA
μA | | | | | | 100 | | ns | | | | | | 400 | | ns | | Input Supply Current | $V_{IN} = 12V$, $V_{OUT} = 1.5V$, $I_{OUT} = 6A$
$V_{IN} = 12V$, $V_{OUT} = 3.3V$, $I_{OUT} = 6A$
$V_{IN} = 5V$, $V_{OUT} = 1.5V$, $I_{OUT} = 6A$
$V_{IN} = 24V$ to 3.3V at 6A, EXTV _{CC} = 5V | | | 0.88
1.50
2.08
0.98 | | A
A
A
A
4602hvf | | | Output Voltage ns Under Voltage Lockout Threshold Input Inrush Current at Startup Input Supply Bias Current | Output Voltage | Output Voltage FCB = 0V VIN = 5V or 12V, VOUT = 1.5V, IOUT = 0A Input Inrush Current at Startup Input Supply Bias Current | Output Voltage FCB = 0V | Output Voltage | Output Voltage | # **ELECTRICAL CHARACTERISTICS** The ullet denotes the specifications which apply over the -40° C to 85° C temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C, $V_{IN} = 12V$. Per typical application (front page) configuration. | SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | | |---|---|---|-----|----------------|---------------|----------------|-------------------| | Output Specifica | ntions | | | | | | | | TOUTDC | Output Continuous Current Range
(See Output Current Derating Curves for
Different V _{IN} , V _{OUT} and T _A) | V _{IN} = 12V, V _{OUT} = 1.5V
V _{IN} = 24V, V _{OUT} = 2.5V (Note 3) | | 0 | | 6
6 | A
A | | $\frac{\Delta V_{OUT(LINE)}}{V_{OUT}}$ | Line Regulation Accuracy | V _{OUT} = 1.5V. FCB = 0V, I _{OUT} = 0A,
V _{IN} = 4.5V to 28V | • | | 0.15 | | % | | $\frac{\Delta V_{OUT(0A-6A)}}{V_{OUT}}$ | Load Regulation Accuracy | $V_{OUT} = 1.5V$. FCB = 0V, $I_{OUT} = 0A$ to 6A, $V_{IN} = 5V$, $V_{IN} = 12V$ (Note 4) | • | | ±0.25
±0.5 | ±0.5
±1 | %
% | | $\overline{V_{OUT(AC)}}$ | Output Ripple Voltage | V _{IN} = 12V, V _{OUT} = 1.5V, FCB = 0V, I _{OUT} = 0A | | | 10 | 15 | mV _{P-P} | | fs | Output Ripple Voltage Frequency | FCB = 0V, I _{OUT} = 6A, V _{IN} = 12V,
V _{OUT} = 1.5V | | | 800 | | kHz | | t _{START} | Turn-On Time | $V_{OUT} = 1.5V, I_{OUT} = 1A$
$V_{IN} = 12V$
$V_{IN} = 5V$ | | | 0.5
0.7 | | ms
ms | | ΔV _{OUTLS} | Voltage Drop for Dynamic Load Step | V _{OUT} = 1.5V, Load Step: 0A/µs to 3A/µs
C _{OUT} = 22µF 6.3V, 330µF 4V Pos Cap,
See Table 2 | | | 30 | | mV | | t _{SETTLE} | Settling Time for Dynamic Load Step V _{IN} = 12V | Load: 10% to 90% to 10% of Full Load | | | 25 | | μѕ | | I _{ОИТРК} | Output Current Limit | Output Voltage in Foldback V _{IN} = 24V, V _{OUT} = 2.5V V _{IN} = 12V, V _{OUT} = 1.5V V _{IN} = 5V, V _{OUT} = 1.5V | | | 9
9
9 | | A
A
A | | Control Stage | | 1110 31, 1001 1101 | | l | | | | | V _{OSET} | Voltage at V _{OSET} Pin | $I_{OUT} = 0A, V_{OUT} = 1.5V$ | • | 0.591
0.594 | 0.6
0.6 | 0.609
0.606 | V | | V _{RUN/SS} | RUN ON/OFF Threshold | | | 0.8 | 1.5 | 2 | V | | I _{RUN(C)/SS} | Soft-Start Charging Current | V _{RUN/SS} = 0V | | -0.5 | -1.2 | -3 | μА | | I _{RUN(D)/SS} | Soft-Start Discharging Current | V _{RUN/SS} = 4V | | 0.8 | 1.8 | 3 | μА | | $V_{IN} - SV_{IN}$ | | EXTV _{CC} = 0V, FCB = 0V | | | 100 | | mV | | I _{EXTVCC} | Current into EXTV _{CC} Pin | EXTV _{CC} = 5V, FCB = 0V, V _{OUT} = 1.5V,
I _{OUT} = 0A | | | 16 | | mA | | R _{FBHI} | Resistor Between V _{OUT} and FB Pins | | | | 100 | | kΩ | | $\overline{V_{FCB}}$ | Forced Continuous Threshold | | | 0.57 | 0.6 | 0.63 | V | | I _{FCB} | Forced Continuous Pin Current | V _{FCB} = 0.6V | | | -1 | -2 | μА | | PGOOD Output | | | | | | | | | ΔV_{OSETH} | PGOOD Upper Threshold | V _{OSET} Rising | | 7.5 | 10 | 12.5 | % | | ΔV_{OSETL} | PGOOD Lower Threshold | V _{OSET} Falling | | -7.5 | -10 | -12.5 | % | | $\Delta V_{OSET(HYS)}$ | PGOOD Hysteresis | V _{OSET} Returning | | | 2 | | % | | $\overline{V_{PGL}}$ | PGOOD Low Voltage | I _{PGOOD} = 5mA | | | 0.15 | 0.4 | V | **Note 1:** Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. **Note 2:** The LTM4602HVE is guaranteed to meet performance specifications
from 0°C to 85°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls. The LTM4602HVI is guaranteed and tested over the -40°C to 85°C temperature range. **Note 3:** Refer to current de-rating curves and thermal application note. Note 4: Test assumes current derating verses temperature. # TYPICAL PERFORMANCE CHARACTERISTICS (See Figure 22 for all curves) Light Load Efficiency vs Load Current with $12V_{IN}$ (FCB > 0.7V, <5V) #### 1.2V Transient Response 1.5V Transient Response 1.5V AT 3A/ μ s LOAD STEP C_{OUT} = 22 μ F, 6.3V CERAMIC 330 μ F, 4V SANYO POS CAP 1.8V Transient Response 1.8V AT 3A/ μ s LOAD STEP C_{OUT} = 22 μ F, 6.3V CERAMIC 330 μ F, 4V SANYO POS CAP #### 2.5V Transient Response 2.5V AT 3A/ μ s LOAD STEP C_{OUT} = 22 μ F, 6.3V CERAMIC 330 μ F, 4V SANYO POS CAP # TYPICAL PERFORMANCE CHARACTERISTICS (See Figure 22 for all curves) #### 3.3V Transient Response 3.3V AT 3A/µs LOAD STEP $C_{OUT} = 22\mu F$, 6.3V CERAMIC 330 μF , 4V SANYO POS CAP #### Start-Up, I_{OUT} = 0A C_{OUT} = 1 × 22 μ F, 6.3V X5R 330 μ F, 4V SANYO POS CAP NO EXTERNAL SOFT-START CAPACITOR #### Start-Up, $I_{OUT} = 6A$ (Resistive Load) C_{OUT} = 1 × 22 μ F, 6.3V X5R 330 μ F, 4V SANYO POS CAP NO EXTERNAL SOFT-START CAPACITOR #### **Short-Circuit Protection**, $I_{OUT} = 0A$ $C_{OUT} = 1 \times 22 \mu F, 6.3 V X5 R$ 330μF, 4V SANYO POS CAP NO EXTERNAL SOFT-START CAPACITOR **Short-Circuit Protection**, $I_{OUT} = 6A$ $C_{OUT} = 1 \times 22 \mu F, 6.3 V X5 R$ 330μF, 4V SANYO POS CAP NO EXTERNAL SOFT-START CAPACITOR ### VIN to VOUT Stepdown Ratio SEE FREQUENCY ADJUSTMENT DISCUSSION FOR 12V_{IN} TO 5V_{OUT} AND 5V_{IN} TO 3.3V_{OUT} CONVERSION # PIN FUNCTIONS (See Package Description for Pin Assignment) V_{IN} (Bank 1): Power Input Pins. Apply input voltage between these pins and PGND pins. Recommend placing input decoupling capacitance directly between V_{IN} pins and PGND pins. f_{ADJ} (Pin A15): A 110k resistor from V_{IN} to this pin sets the one-shot timer current, thereby setting the switching frequency. The LTM4602HV switching frequency is typically 850kHz. An external resistor to ground can be selected to reduce the one-shot timer current, thus lower the switching frequency to accommodate a higher duty cycle step down requirement. See the applications section. **SV**_{IN} (**Pin A17**): Supply Pinfor Internal PWM Controller. Leave this pin open or add additional decoupling capacitance. **EXTV**_{CC} (**Pin A19**): External 5V supply pin for controller. If left open or grounded, the internal 5V linear regulator will power the controller and MOSFET drivers. For high input voltage applications, connecting this pin to an external 5V will reduce the power loss in the power module. The EXTV_{CC} voltage should never be higher than V_{IN} . V_{OSET} (Pin A21): The Negative Input of The Error Amplifier. Internally, this pin is connected to V_{OUT} with a 100k precision resistor. Different output voltages can be programmed with additional resistors between the V_{OSET} and SGND pins. **COMP (Pin B23):** Current Control Threshold and Error Amplifier Compensation Point. The current comparator threshold increases with this control voltage. The voltage ranges from 0V to 2.4V with 0.8V corresponding to zero sense voltage (zero current). **SGND (Pin D23):** Signal Ground Pin. All small-signal components should connect to this ground, which in turn connects to PGND at one point. **RUN/SS (Pin F23):** Run and Soft-Start Control. Forcing this pin below 0.8V will shut down the power supply. Inside the power module, there is a 1000pF capacitor which provides approximately 0.7ms soft-start time with 200µF output capacitance. Additional soft-start time can be achieved by adding additional capacitance between the RUN/SS and SGND pins. The internal short-circuit latchoff can be disabled by adding a resistor between this pin and the V_{IN} pin. This resistor must supply a minimum 5µA pull up current. **FCB (Pin G23):** Forced Continuous Input. Grounding this pin enables forced continuous mode operation regardless of load conditions. Tying this pin above 0.63V enables discontinuous conduction mode to achieve high efficiency operation at light loads. There is an internal 10k resistor between the FCB and SGND pins. **PGOOD (Pin J23):** Output Voltage Power Good Indicator. When the output voltage is within 10% of the nominal voltage, the PGOOD is open drain output. Otherwise, this pin is pulled to ground. **PGND (Bank 2):** Power ground pins for both input and output returns. **V_{OUT}** (**Bank 3**): Power Output Pins. Apply output load between these pins and PGND pins. Recommend placing High Frequency output decoupling capacitance directly between these pins and PGND pins. # SIMPLIFIED BLOCK DIAGRAM Figure 1. Simplified LTM4602HV Block Diagram # **DECOUPLING REQUIREMENTS** $T_A = 25$ °C, $V_{IN} = 12$ V. Use Figure 1 configuration. | SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | |------------------|--|---|-----|-----|-----|-------| | C _{IN} | External Input Capacitor Requirement (V _{IN} = 4.5V to 28V, V _{OUT} = 2.5V) | I _{OUT} = 6A, 2x 10μF 35V Ceramic
Taiyo Yuden GDK316BJ106ML | 20 | | | μF | | C _{OUT} | External Output Capacitor Requirement (V _{IN} = 4.5V to 28V, V _{OUT} = 2.5V) | I _{OUT} = 6A, Refer to Table 2 in the Applications Information Section | 100 | 200 | | μF | # **OPERATION** ## µModule Description The LTM4602HV is a standalone non-isolated synchronous switching DC/DC power supply. It can deliver up to 6A of DC output current with only bulk external input and output capacitors. This module provides a precisely regulated output voltage programmable via one external resistor from $0.6V_{DC}$ to $5.0V_{DC}$. The input voltage range is 4.5V to 28V. A simplified block diagram is shown in Figure 1 and the typical application schematic is shown in Figure 21. The LTM4602HV contains an integrated LTC constant on-time current-mode regulator, ultra-low R_{DS(ON)} FETs with fast switching speed and integrated Schottky diode. The typical switching frequency is 800kHz at full load. With current mode control and internal feedback loop compensation, the LTM4602HV module has sufficient stability margins and good transient performance under a wide range of operating conditions and with a wide range of output capacitors, even all ceramic output capacitors (X5R or X7R). Current mode control provides cycle-by-cycle fast current limit. In addition, foldback current limiting is provided in an over-current condition while V_{FB} drops. Also, the LTM4602HV has defeatable short circuit latch off. Internal overvoltage and undervoltage comparators pull the opendrain PG00D output low if the output feedback voltage exits a $\pm 10\%$ window around the regulation point. Furthermore, in an overvoltage condition, internal top FET Q1 is turned off and bottom FET Q2 is turned on and held on until the overvoltage condition clears. Pulling the RUN/SS pin low forces the controller into its shutdown state, turning off both Q1 and Q2. Releasing the pin allows an internal 1.2 μ A current source to charge up the softstart capacitor. When this voltage reaches 1.5V, the controller turns on and begins switching. At low load current the module works in continuous current mode by default to achieve minimum output voltage ripple. It can be programmed to operate in discontinuous current mode for improved light load efficiency when the FCB pin is pulled up above 0.8V and no higher than 6V. The FCB pin has a 10k resistor to ground, so a resistor to V_{IN} can set the voltage on the FCB pin. When EXTV_{CC} pin is grounded or open, an integrated 5V linear regulator powers the controller and MOSFET gate drivers. If a minimum 4.7V external bias supply is applied on the EXTV_{CC} pin, the internal regulator is turned off, and an internal switch connects EXTV_{CC} to the gate driver voltage. This eliminates the linear regulator power loss with high input voltage, reducing the thermal stress on the controller. The maximum voltage on EXTV_{CC} pin is 6V. The EXTV_{CC} voltage should never be higher than the V_{IN} voltage. Also EXTV_{CC} must be sequenced after V_{IN} . Recommended for 24V operation to lower temperature in the μModule . The typical LTM4602HV application circuit is shown in Figure 20. External component selection is primarily determined by the maximum load current and output voltage. ## **Output Voltage Programming and Margining** The PWM controller of the LTM4602HV has an internal 0.6V \pm 1% reference voltage. As shown in the block diagram, a 100k/0.5% internal feedback resistor connects V_{OUT} and FB pins. Adding a resistor R_{SET} from V_{OSET} pin to SGND pin programs the output voltage: $$V_0 = 0.6V \bullet \frac{100k + R_{SET}}{R_{SET}}$$ Table 1 shows the standard values of 1% R_{SET} resistor for typical output voltages: Table 1 | R_{SET} (k Ω) | Open | 100 | 66.5 | 49.9 | 43.2 | 31.6 | 22.1 | 13.7 | |-------------------------|------|-----|------|------|------|------|------|------| | V ₀ (V) | 0.6 | 1.2 | 1.5 | 1.8 | 2 | 2.5 | 3.3 | 5 | Voltage margining is the dynamic adjustment of the output voltage to its worst case operating range in production testing to stress the load circuitry, verify control/protection functionality of the board and improve the system reliability. Figure 2 shows how to implement margining function with the LTM4602HV. In addition to the feedback resistor R_{SET} , several external components are added. Turn off both transistor Q_{UP} and Q_{DOWN} to disable the margining. When
Q_{UP} is on and Q_{DOWN} is off, the output Figure 2 voltage is margined up. The output voltage is margined down when Q_{DOWN} is on and Q_{UP} is off. If the output voltage V_0 needs to be margined up/down by $\pm M\%$, the resistor values of R_{UP} and R_{DOWN} can be calculated from the following equations: $$\frac{(R_{SET} || R_{UP}) \bullet V_0 \bullet (1 + M\%)}{(R_{SET} || R_{UP}) + 100k\Omega} = 0.6V$$ $$\frac{R_{SET} \bullet V_0 \bullet (1-M\%)}{R_{SET} + (100k\Omega \|R_{DOWN})} = 0.6V$$ ## **Input Capacitors** The LTM4602HV μ Module should be connected to a low ac-impedance DC source. High frequency, low ESR input capacitors are required to be placed adjacent to the module. In Figure 20, the bulk input capacitor C_{IN} is selected for its ability to handle the large RMS current into the converter. For a buck converter, the switching duty-cycle can be estimated as: $$D = \frac{V_0}{V_{IN}}$$ Without considering the inductor current ripple, the RMS current of the input capacitor can be estimated as: $$I_{CIN(RMS)} = \frac{I_{O(MAX)}}{n\%} \bullet \sqrt{D \bullet (1-D)}$$ In the above equation, $\eta\%$ is the estimated efficiency of the power module. C1 can be a switcher-rated electrolytic aluminum capacitor, OS-CON capacitor or high volume ceramic capacitors. Note the capacitor ripple current ratings are often based on only 2000 hours of life. This makes it advisable to properly derate the input capacitor, or choose a capacitor rated at a higher temperature than required. Always contact the capacitor manufacturer for derating requirements. In Figure 16, the input capacitors are used as high frequency input decoupling capacitors. In a typical 6A output application, 1-2 pieces of very low ESR X5R or X7R, $10\mu F$ ceramic capacitors are recommended. This decoupling capacitor should be placed directly adjacent the module input pins 4602hv in the PCB layout to minimize the trace inductance and high frequency AC noise. ## **Output Capacitors** The LTM4602HV is designed for low output voltage ripple. The bulk output capacitor C_{OUT} is chosen with low enough effective series resistance (ESR) to meet the output voltage ripple and transient requirements. C_{OUT} can be low ESR tantalum capacitor, low ESR polymer capacitor or ceramic capacitor (X5R or X7R). The typical capacitance is 200µF if all ceramic output capacitors are used. The internally optimized loop compensation provides sufficient stability margin for all ceramic capacitors applications. Additional output filtering may be required by the system designer, if further reduction of output ripple or dynamic transient spike is required. Refer to Table 2 for an output capacitance matrix for each output voltage Droop, peak to peak deviation and recovery time during a $3A/\mu s$ transient with a specific output capacitance. # Fault Conditions: Current Limit and Over current Foldback The LTM4602HV has a current mode controller, which inherently limits the cycle-by-cycle inductor current not only in steady state operation, but also in transient. To further limit current in the event of an over load condition, the LTM4602HV provides foldback current limiting. If the output voltage falls by more than 50%, then the maximum output current is progressively lowered to about one sixth of its full current limit value. ## Soft-Start and Latchoff with the RUN/SS pin The RUN/SS pin provides a means to shut down the LTM4602HV as well as a timer for soft-start and overcurrent latchoff. Pulling the RUN/SS pin below 0.8V puts the LTM4602HV into a low quiescent current shutdown (IQ \leq 75µA). Releasing the pin allows an internal 1.2µA current source to charge up the timing capacitor C_{SS} . Inside LTM4602HV, there is an internal 1000pF capacitor from RUN/SS pin to ground. If RUN/SS pin has an external capacitor C_{SS_EXT} to ground, the delay before starting is about: $$t_{DELAY} = \frac{1.5V}{1.2\mu A} \bullet (C_{SS_EXT} + 1000pF)$$ When the voltage on RUN/SS pin reaches 1.5V, the LTM4602HV internal switches are operating with a clamping of the maximum output inductor current limited by the RUN/SS pin total soft-start capacitance. As the RUN/SS pin voltage rises to 3V, the soft-start clamping of the inductor current is released. ## VIN to Vout Stepdown Ratios There are restrictions in the maximum V_{IN} to V_{OUT} step down ratio that can be achieved for a given input voltage. These constraints are shown in the Typical Performance Characteristics curves labeled " V_{IN} to V_{OUT} Stepdown Ratio". Note that additional thermal de-rating may apply. See the Thermal Considerations and Output Current De-Rating sections of this data sheet. Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 17), OA to 3A Step (Typical Values) #### TYPICAL MEASURED VALUES | C _{OUT1} VENDORS | PART NUMBER | C _{OUT2} VENDORS | PART NUMBER | |---------------------------|----------------------------------|---------------------------|---------------------------| | TDK | C4532X5R0J107MZ (100UF,6.3V) | SANYO POS CAP | 6TPE330MIL (330μF, 6.3V) | | TAIYO YUDEN | JMK432BJ107MU-T (100μF, 6.3V) | SANYO POS CAP | 2R5TPE470M9 (470μF, 2.5V) | | TAIYO YUDEN | JMK316BJ226ML-T501 (22μF, 6.3V) | SANYO POS CAP | 4TPE470MCL (470μF, 4V) | | V _{OUT} (V) | C _{IN}
(CERAMIC) | C _{IN}
(BULK) | C _{OUT1}
(CERAMIC) | C _{OUT2}
(BULK) | C _{COMP} | C3 | V _{IN}
(V) | DROOP
(mV) | PEAK TO PEAK
(mV) | RECOVERY TIME (µs) | LOAD STEP
(A/µs) | |----------------------|------------------------------|---------------------------|--------------------------------|-----------------------------|-------------------|-------|------------------------|---------------|----------------------|--------------------|---------------------| | 1.2 | 2 × 10μF 25V | 150µF 35V | 3 × 22μF 6.3V | 470μF 4V | NONE | 100pF | 5 | 30 | 60 | 25 | 3 | | 1.2 | 2 × 10μF 25V | 150µF 35V | 1 × 100µF 6.3V | 470μF 2.5V | NONE | 100pF | 5 | 30 | 60 | 20 | 3 | | 1.2 | 2 × 10μF 25V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 100pF | 5 | 25 | 54 | 20 | 3 | | 1.2 | 2 × 10μF 25V | 150μF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 5 | 25 | 55 | 20 | 3 | | 1.2 | 2 × 10μF 25V | 150μF 35V | 3 × 22μF 6.3V | 470µF 4V | NONE | 100pF | 12 | 30 | 60 | 25 | 3 | | 1.2 | 2 × 10μF 25V | 150μF 35V | 1 × 100µF 6.3V | 470μF 2.5V | NONE | 100pF | 12 | 25 | 54 | 20 | 3 | | 1.2 | 2 × 10μF 25V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 100pF | 12 | 25 | 56 | 20 | 3 | | 1.2 | 2 × 10μF 25V | 150μF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 12 | 25 | 55 | 20 | 3 | | 1.5 | 2 × 10μF 25V | 150μF 35V | 3 × 22μF 6.3V | 470µF 4V | NONE | 100pF | 5 | 25 | 50 | 25 | 3 | | 1.5 | 2 × 10μF 25V | 150µF 35V | 1 × 100µF 6.3V | 470μF 2.5V | NONE | 100pF | 5 | 25 | 54 | 20 | 3 | | 1.5 | 2 × 10μF 25V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 100pF | 5 | 25 | 59 | 20 | 3 | | 1.5 | 2 × 10μF 25V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 5 | 26 | 59 | 20 | 3 | | 1.5 | 2 × 10μF 25V | 150µF 35V | 3 × 22μF 6.3V | 470µF 4V | NONE | 100pF | 12 | 25 | 55 | 25 | 3 | | 1.5 | 2 × 10μF 25V | 150µF 35V | 1 × 100µF 6.3V | 470μF 2.5V | NONE | 100pF | 12 | 25 | 54 | 20 | 3 | | 1.5 | 2 × 10μF 25V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 100pF | 12 | 28 | 59 | 20 | 3 | | 1.5 | 2 × 10μF 25V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 12 | 26 | 59 | 20 | 3 | | 1.8 | 2 × 10μF 25V | 150µF 35V | 3 × 22μF 6.3V | 470µF 4V | NONE | 100pF | 5 | 25 | 54 | 30 | 3 | | 1.8 | 2 × 10µF 25V | 150µF 35V | 1 × 100μF 6.3V | 470µF 2.5V | NONE | 100pF | 5 | 25 | 50 | 20 | 3 | | 1.8 | 2 × 10μF 25V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 100pF | 5 | 25 | 50 | 20 | 3 | | 1.8 | 2 × 10µF 25V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 5 | 29 | 60 | 20 | 3 | | 1.8 | 2 × 10µF 25V | 150µF 35V | 3 × 22µF 6.3V | 470μF 4V | NONE | 100pF | 12 | 25 | 50 | 30 | 3 | | 1.8 | 2 × 10µF 25V | 150µF 35V | 1 × 100μF 6.3V | 470µF 2.5V | NONE | 100pF | 12 | 25 | 50 | 20 | 3 | | 1.8 | 2 × 10μF 25V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 100pF | 12 | 25 | 50 | 20 | 3 | | 1.8 | 2 × 10µF 25V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 12 | 29 | 60 | 20 | 3 | | 2.5 | 2 × 10µF 25V | 150µF 35V | 1 × 100μF 6.3V | 470μF 4V | NONE | 220pF | 5 | 25 | 50 | 30 | 3 | | 2.5 | 2 × 10µF 25V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 220pF | 5 | 25 | 50 | 30 | 3 | | 2.5 | 2 × 10µF 25V | 150µF 35V | 3 × 22µF 6.3V | 470μF 4V | NONE | 220pF | 5 | 25 | 50 | 30 | 3 | | 2.5 | 2 × 10µF 25V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 220pF | 5 | 25 | 50 | 25 | 3 | | 2.5 | 2 × 10µF 25V | 150µF 35V | 1 × 100µF 6.3V | 470µF 4V | NONE | 220pF | 12 | 25 | 50 | 30 | 3 | | 2.5 | 2 × 10µF 25V | 150µF 35V | 3 × 22µF 6.3V | 470µF 4V | NONE | 220pF | 12 | 25 | 50 | 30 | 3 | | 2.5 | 2 × 10μF 25V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 220pF | 12 | 25 | 50 | 30 | 3 | | 2.5 | 2 × 10µF 25V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 220pF | 12 | 27 | 54 | 25 | 3 | | 3.3 | 2 × 10μF 25V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 220pF | 7 | 32 | 64 | 30 | 3 | | 3.3 | 2 × 10μF 25V | 150µF 35V | 1 × 100µF 6.3V | 470µF 4V | NONE | 220pF | 7 | 30 | 60 | 30 | 3 | | 3.3 | 2 × 10μF 25V | 150µF 35V | 3 × 22µF 6.3V | 470μF 4V | NONE | 220pF | 7 | 30 | 60 | 35 | 3 | | 3.3 | 2 × 10µF 25V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 220pF | 7 | 32 | 64 | 25 | 3 | | 3.3 | 2 × 10µF 25V | 150µF 35V | 1 × 100µF 6.3V | 470μF 4V | NONE | 220pF | 12 | 38 | 58 | 30 | 3 | | 3.3 | 2 × 10µF 25V | 150µF 35V | 3 × 22µF 6.3V | 470μF 4V | NONE | 220pF | 12 | 30 | 60 | 35 | 3 | | 3.3 | 2 × 10µF 25V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 220pF | 12 | 30 | 60 | 30 | 3 | | 3.3 | 2 × 10µF 25V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 220pF | 12 | 32 | 64 | 25 | 3 | | 5 | 1 × 10µF 25V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 15 | 80 | 160 | 25 | 3 | | 5 | 1 × 10μF 25V | 150µF 35V | 4 × 100μF 6.3V | NONE
 NONE | 100pF | 20 | 80 | 160 | 25 | 3 | After the controller has been started and given adequate time to charge up the output capacitor, C_{SS} is used as a short-circuit timer. After the RUN/SS pin charges above 4V, if the output voltage falls below 75% of its regulated value, then a short-circuit fault is assumed. A 1.8 μ A current then begins discharging C_{SS} . If the fault condition persists until the RUN/SS pin drops to 3.5V, then the controller turns off both power MOSFETs, shutting down the converter permanently. The RUN/SS pin must be actively pulled down to ground in order to restart operation. The over-current protection timer requires the soft-start timing capacitor C_{SS} be made large enough to guarantee that the output is in regulation by the time C_{SS} has reached the 4V threshold. In general, this will depend upon the size of the output capacitance, output voltage and load current characteristic. A minimum external soft-start capacitor can be estimated from: $$C_{SS_EXT} + 1000pF > C_{OUT} \bullet V_{OUT} (10^{-3} [F/V_S])$$ Generally 0.1µF is more than sufficient. Since the load current is already limited by the current mode control and current foldback circuitry during a short circuit, overcurrent latchoff operation is NOT always needed or desired, especially if the output has large capacitance or the load draws high current during start-up. The latchoff feature can be overridden by a pull-up current greater than 5 μ A but less than 80 μ A to the RUN/SS pin. The additional current prevents the discharge of CSS during a fault and also shortens the soft-start period. Using a resistor from RUN/SS pin to VIN is a simple solution to defeat latchoff. Any pull-up network must be able to maintain RUN/SS above 4V maximum latchoff threshold and overcome the $4\mu A$ maximum discharge current. Figure 3 shows a conceptual drawing of V_{RUN} during startup and short circuit. Figure 3. RUN/SS Pin Voltage During Startup and Short-Circuit Protection | V _{IN} | R _{RUN/SS} | | |-----------------|---------------------|------------| | 4.5V TO 5.5V | 50k | | | 10.8V TO 13.8V | 150k | | | 24V TO 28V | 500k | 4602HV F04 | Figure 4. Defeat Short-Circuit Latchoff with a Pull-Up Resistor to V_{IN} LINEAR TECHNOLOGY #### Enable The RUN/SS pin can be driven from logic as shown in Figure 5. This function allows the LTM4602HV to be turned on or off remotely. The ON signal can also control the sequence of the output voltage. Figure 5. Enable Circuit with External Logic #### **Output Voltage Tracking** For the applications that require output voltage tracking, several LTM4602HV modules can be programmed by the power supply tracking controller such as the LTC2923. Figure 6 shows a typical schematic with LTC2923. Coincident, ratiometric and offset tracking for V_0 rising and falling can be implemented with different sets of resistor values. See the LTC2923 data sheet for more details. Figure 6. Output Voltage Tracking with the LTC2923 Controller ## **EXTV_{CC} Connection** An internal low dropout regulator produces an internal 5V supply that powers the control circuitry and FET drivers. Therefore, if the system does not have a 5V power rail, the LTM4602HV can be directly powered by V_{IN} . The gate driver current through LDO is about 16mA. The internal LDO power dissipation can be calculated as: $$P_{LDO\ LOSS} = 16mA \cdot (V_{IN} - 5V)$$ The LTM4602HV also provides an external gate driver voltage pin EXTV $_{CC}$. If there is a 5V rail in the system, it is recommended to connect EXTV $_{CC}$ pin to the external 5V rail. Whenever the EXTV $_{CC}$ pin is above 4.7V, the internal 5V LDO is shut off and an internal 50mA P-channel switch connects the EXTV $_{CC}$ to internal 5V. Internal 5V is supplied from EXTV $_{CC}$ until this pin drops below 4.5V. Do not apply more than 6V to the EXTV $_{CC}$ pin and ensure that EXTV $_{CC}$ < V $_{IN}$. The following list summaries the possible connections for EXTV $_{CC}$: - 1. EXTV $_{\rm CC}$ grounded. Internal 5V LDO is always powered from the internal 5V regulator. - 2. EXTV_{CC} connected to an external supply. Internal LDO is shut off. A high efficiency supply compatible with the MOSFET gate drive requirements (typically 5V) can improve overall efficiency. With this connection, it is always required that the EXTV_{CC} voltage can not be higher than V_{IN} pin voltage. ## **Discontinuous Operation and FCB Pin** The FCB pin determines whether the internal bottom MOSFET remains on when the inductor current reverses. There is an internal 10k pulling down resistor connecting this pin to ground. The default light load operation mode is forced continuous (PWM) current mode. This mode provides minimum output voltage ripple. In the application where the light load efficiency is important, tying the FCB pin above 0.6V threshold enables discontinuous operation where the bottom MOSFET turns off when inductor current reverses. Therefore, the conduction loss is minimized and light load efficient is improved. The penalty is that the controller may skip cycle and the output voltage ripple increases at light load. #### Paralleling Operation with Load Sharing Two or more LTM4602HV modules can be paralleled to provide higher than 6A output current. Figure 7 shows the necessary interconnection between two paralleled modules. The OPTI-LOOP™ current mode control ensures good current sharing among modules to balance the thermal stress. The new feedback equation for two or more LTM4602HVs in parallel is: $$V_{OUT} = 0.6V \bullet \frac{\frac{100k}{N} + R_{SET}}{R_{SFT}}$$ where N is the number of LTM4602HVs in parallel. #### Thermal Considerations and Output Current Derating The power loss curves in Figures 8 and 15 can be used in coordination with the load current derating curves in Figures 9 to 14, and Figures 16 to 19 for calculating an approximate θ_{JA} for the module with various heatsinking methods. Thermal models are derived from several temperature measurements at the bench, and thermal modeling analysis. Application Note 103 provides a detailed explanation of the analysis for the thermal models, and the derating curves. Tables 3 and 4 provide a summary of the equivalent θ_{JA} for the noted conditions. These equivalent θ_{JA} parameters are correlated to the measure values, and improved with air-flow. The case temperature is maintained at 100°C or below for the derating curves. This allows for 4W maximum power dissipation in the total module with top and bottom heatsinking, and 2W power dissipation through the top of the module with an approximate θ_{JC} between 6°C/W to 9°C/W. This equates to a total of 124°C at the junction of the device. The θ_{JA} values in Tables 3 and 4 can be used to derive the derating curves for other output voltages. ## **Safety Considerations** The LTM4602HV modules do not provide isolation from V_{IN} to V_{OUT} . There is no internal fuse. If required, a slow blow fuse with a rating twice the maximum input current should be provided to protect each unit from catastrophic failure. OPTI-LOOP is a trademark of Linear Technology Corporation. Figure 7. Parallel Two µModules with Load Sharing LINEAR TECHNOLOGY Figure 8. 1.5V Power Loss Curves vs Load Current Figure 9. 5V to 1.5V, No Heatsink Figure 10. 5V to 1.5V, BGA Heatsink Figure 11. 12V to 1.5V, No Heatsink Figure 12. 12V to 1.5V, BGA Heatsink Figure 13. 3.3V Power Loss Figure 14. 5V to 3.3V, No Heatsink Figure 15. 5V to 3.3V, BGA Heatsink Figure 16. 12V to 3.3V (950kHz), No Heatsink Figure 17. 12V to 3.3V (950kHz), BGA Heatsink Figure 18. 24V to 3.3V, No Heatsink Figure 19. 24V to 3.3V, BGA Heatsink Table 3. 1.5V Output | AIR FLOW (LFM) | HEATSINK | θ _{JA} (°C/W) | |----------------|--------------|------------------------| | 0 | None | 15.2 | | 200 | None | 14 | | 400 | None | 12 | | 0 | BGA Heatsink | 13.9 | | 200 | BGA Heatsink | 11.3 | | 400 | BGA Heatsink | 10.25 | #### Layout Checklist/Example The high integration of the LTM4602HV makes the PCB board layout very simple and easy. However, to optimize its electrical and thermal performance, some layout considerations are still necessary. - Use large PCB copper areas for high current path, including V_{IN}, PGND and V_{OUT}. It helps to minimize the PCB conduction loss and thermal stress - Place high frequency ceramic input and output capacitors next to the V_{IN}, PGND and V_{OUT} pins to minimize high frequency noise - Place a dedicated power ground layer underneath the unit - To minimize the via conduction loss and reduce module thermal stress, use multiple vias for interconnection between top layer and other power layers Table 4. 3.3V Output | AIR FLOW (LFM) | HEATSINK | θ _{JA} (°C/W) | |----------------|--------------|------------------------| | 0 | None | 15.2 | | 200 | None | 14.6 | | 400 | None | 13.4 | | 0 | BGA Heatsink | 13.9 | | 200 | BGA Heatsink | 11.1 | | 400 | BGA Heatsink | 10.5 | - Do not put via directly on pad - Use a separated SGND ground copper area for components connected to signal pins. Connect the SGND to PGND underneath the unit Figure 20 gives a good example of the recommended layout. #### LTM4602 Frequency Adjustment The LTM4602HV is designed to typically operate at 850kHz across most input and output conditions. The control architecture is constant on time valley mode current control. The f_{ADJ} pin is typically left open or decoupled with an optional 1000pF capacitor. The switching frequency has been optimized to maintain constant output ripple over the operating conditions. The equations for setting the operating frequency are set around a programmable constant on time. This on time is developed by a programmable Figure 20. Recommended PCB Layout current into an on board 10pF capacitor that establishes a ramp that is compared to a voltage threshold that is equal to the output voltage up to a 2.4V clamp. This I_{ON}
current is equal to: $I_{ON} = (V_{IN} - 0.7V)/110k$, with the 110k onboard resistor from V_{IN} to f_{AD,I}. The on time is equal to $t_{ON} = (V_{OUT}/I_{ON}) \cdot 10pF$ and $t_{OFF} = t_s - t_{ON}$. The frequency is equal to: Freq. = DC/t_{ON} . The I_{ON} current is proportional to V_{IN}, and the regulator duty cycle is inversely proportional to V_{IN} , therefore the step-down regulator will remain relatively constant frequency as the duty cycle adjustment takes place with lowering V_{IN}. The on time is proportional to V_{OLIT} up to a 2.4V clamp. This will hold frequency relatively constant with different output voltages up to 2.4V. The regulator switching period is comprised of the on time and off time as depicted in Figure 21. The on time is equal to $t_{ON} = (V_{OUT}/I_{ON}) \cdot 10pF$ and $t_{OFF} = t_s - t_{ON}$. The frequency is equal to: Frequency = DC/t_{ON}). Figure 21 The LTM4602 has a minimum (t_{ON}) on time of 100 nanoseconds and a minimum (t_{OFF}) off time of 400 nanoseconds. The 2.4V clamp on the ramp threshold as a function of V_{OLIT} will cause the switching frequency to increase by the ratio of $V_{OUT}/2.4V$ for 3.3V and 5V outputs. This is due to the fact the on time will not increase as V_{OLIT} increases past 2.4V. Therefore, if the nominal switching frequency is 850kHz, then the switching frequency will increase to ~1.2MHz for 3.3V, and ~1.7MHz for 5V outputs due to Frequency = (DC/t_{ON}) When the switching frequency increases to 1.2MHz, then the time period ts is reduced to ~833 nanoseconds and at 1.7MHz the switching period reduces to ~588 nanoseconds. When higher duty cycle conversions like 5V to 3.3V and 12V to 5V need to be accommodated, then the switching frequency can be lowered to alleviate the violation of the 400ns minimum off time. Since the total switching period is $t = t_{ON} + t_{OFF}$ t_{OFF} will be below the 400ns minimum off time. A resistor from the f_{AD,I} pin to ground can shunt current away from the on time generator, thus allowing for a longer on time and a lower switching frequency. 12V to 5V and 5V to 3.3V derivations are explained in the data sheet to lower switching frequency and accommodate these step-down conversions. Equations for setting frequency: $V_{OUT} = 5V$ $I_{ON} = (V_{IN} - 0.7V)/110k$; for 12V input, $I_{ON} = 103\mu A$ frequency = $(I_{ON}/[2.4V \bullet 10pF]) \bullet (DC) = 1.79MHz$; DC = duty cycle, duty cycle is (V_{OLIT}/V_{IN}) $t = t_{ON} + t_{OFF}$, $t_{ON} = on-time$, $t_{OFF} = off-time$ of the switching period; t = 1/frequency t_{OFF} must be greater than 400ns, or $t - t_{ON} > 400$ ns. 1MHz frequency or 1µs period is chosen. $$t_{ON} = 0.41 \cdot 1 \mu s \approx 410 ns$$ $$t_{OFF} = 1\mu s - 410 \text{ns} \approx 590 \text{ns}$$ $t_{\mbox{\scriptsize ON}}$ and $t_{\mbox{\scriptsize OFF}}$ are above the minimums with adequate guard band. Using the frequency = $(I_{ON}/[2.4V \cdot 10pF]) \cdot (DC)$, solve for $I_{ON} = (1MHz \cdot 2.4V \cdot 10pF) \cdot (1/0.41) \approx 58\mu A$. I_{ON} current calculated from 12V input was $103\mu A$, so a resistor from f_{ADJ} to ground = $(0.7V/15k) = 46\mu A$. $103\mu A - 46\mu A = 57\mu A$, sets the adequate I_{ON} current for proper frequency range for the higher duty cycle conversion of 12V to 5V. Input voltage range is limited to 8V to 16V. Higher input voltages can be used without the 15k on f_{ADJ} . The inductor ripple current gets too high above 16V or below 8V. Equations for setting frequency: $V_{OUT} = 3.3V$ $I_{ON} = (V_{IN} - 0.7V)/110k$; for 5V input, $I_{ON} = 39\mu A$ frequency = $(I_{ON}/[2.4V \cdot 10pF]) \cdot (DC) = 1.07MHz$; DC = duty cycle, duty cycle is (V_{OUT}/V_{IN}) $t = t_{ON} + t_{OFF}$, $t_{ON} = on$ -time, $t_{OFF} = off$ -time of the switching period; t = 1/frequency t_{OFF} must be greater than 400ns, or $t - t_{ON} > 400$ ns. $$t_{ON} = DC \cdot t$$ ~450kHz frequency or 2.22µs period is chosen. Frequency range is about 450kHz to 650kHz from 4.5V to 7V input. $$t_{ON} = 0.66 \cdot 2.22 \mu s \approx 1.46 \mu s$$ $$t_{OFF} = 2.22 \mu s - 1.46 \mu s \cong 760 ns$$ $t_{\mbox{\scriptsize ON}}$ and $t_{\mbox{\scriptsize OFF}}$ are above the minimums with adequate guard band. Using the frequency = $(I_{ON}/[2.4V \cdot 10pF]) \cdot (DC)$, solve for I_{ON} = $(450\text{kHz} \cdot 2.4V \cdot 10pF) \cdot (1/0.66) \approx 16\mu\text{A}$. I_{ON} current calculated from 5V input was $39\mu\text{A}$, so a resistor from f_{ADJ} to ground = $(0.7V/30.1\text{k}) = 23\mu\text{A}$. $39\mu\text{A} - 23\mu\text{A} = 16\mu\text{A}$, sets the adequate I_{ON} current for proper frequency range for the higher duty cycle conversion of 5V to 3.3V. Input voltage range is limited to 4.5V to 7V. Higher input voltages can be used without the 30.1k on f_{ADJ} . The inductor ripple current gets too high above 7V, and the 400ns minimum off-time is limited below 4.5V. Therefore, at 3.3V output, a 30.1k resistor is recommended to add from pin f_{ADJ} to ground when the input voltage is between 4.5V to 7V. However, this resistor needs to be removed to avoid high inductor ripple current when the input voltage is more than 7V. Similarly, for 5V output, a 15k resistor is recommended to adjust the frequency when the input voltage is between 8V to 16V. This 15k resistor is removed when the input voltage becomes higher than 16V. Please refer to the Typical Performance curve V_{IN} to V_{OLIT} Step-Down Ratio. In 12V to 3.3V and 24V to 3.3V applications, if a 35k resistor is added from the f_{ADJ} pin to ground, then a 2% efficiency gain will be achieved as shown in the 12V and 24V efficiency graphs shown in the Typical Characteristics. This is due to lowering the transition losses in the power MOSFETs by reducing the switching frequency from 1.3mHz to 1mHz. #### 5V to 3.3V at 5A LINEAR #### 12V to 5V at 5A Figure 22. Typical Application, 5V to 24V Input, 0.6V to 6V Output, 6A Max # TYPICAL APPLICATION #### **Parallel Operation and Load Sharing** #### Current Sharing Between Two LTM4602HV Modules # PACKAGE DESCRIPTION # PACKAGE DESCRIPTION # Pin Assignment Tables (Arranged by Pin Number) | PIN NAME |------------------------|--------------------|---------------------|--------------------|---------------------|--------------------|----------|----------| | A1 - | B1 V _{IN} | C1 - | D1 V _{IN} | E1 - | F1 V _{IN} | G1 PGND | H1 - | | A2 - | B2 - | C2 - | D2 - | E2 - | F2 - | G2 - | H2 - | | A3 V _{IN} | B3 - | C3 - | D3 - | E3 - | F3 - | G3 - | Н3 - | | A4 - | B4 - | C4 - | D4 - | E4 - | F4 - | G4 - | H4 - | | A5 V _{IN} | B5 - | C5 - | D5 - | E5 - | F5 - | G5 - | H5 - | | A6 - | B6 - | C6 - | D6 - | E6 - | F6 - | G6 - | H6 - | | A7 V _{IN} | B7 - | C7 - | D7 - | E7 - | F7 - | G7 - | H7 PGND | | A8 - | B8 - | C8 - | D8 - | E8 - | F8 - | G8 - | Н8 - | | A9 V _{IN} | В9 - | C9 - | D9 - | E9 - | F9 - | G9 - | H9 PGND | | A10 - | B10 - | C10 V _{IN} | D10 - | E10 V _{IN} | F10 - | G10 - | H10 - | | A11 V _{IN} | B11 - | C11 - | D11 - | E11 - | F11 - | G11 - | H11 PGND | | A12 - | B12 - | C12 V _{IN} | D12 - | E12 V _{IN} | F12 - | G12 - | H12 - | | A13 V _{IN} | B13 - | C13 - | D13 - | E13 - | F13 - | G13 - | H13 PGND | | A14 - | B14 - | C14 V _{IN} | D14 - | E14 V _{IN} | F14 - | G14 - | H14 - | | A15 f _{ADJ} | B15 - | C15 - | D15 - | E15 - | F15 - | G15 - | H15 PGND | | A16 - | B16 - | C16 - | D16 - | E16 - | F16 - | G16 - | H16 - | | A17 SV _{IN} | B17 - | C17 - | D17 - | E17 - | F17 - | G17 - | H17 PGND | | A18 - | B18 - | C18 - | D18 - | E18 - | F18 - | G18 - | H18 - | | A19 EXTV _{CC} | B19 - | C19 - | D19 - | E19 - | F19 - | G19 - | H19 - | | A20 - | B20 - | C20 - | D20 - | E20 - | F20 - | G20 - | H20 - | | A21 V _{OSET} | B21 - | C21 - | D21 - | E21 - | F21 - | G21 - | H21 - | | A22 - | B22 - | C22 - | D22 - | E22 - | F22 - | G22 - | H22 - | | A23 - | B23 COMP | C23 - | D23 SGND | E23 - | F23 RUN/SS | G23 FCB | H23 - | | PII | N NAME | PIN |-----|--------|----------|----------|----------|----------|----------------------|----------------------|----------------------| | J1 | PGND | K1 - | L1 - | M1 - | N1 - | P1 - | R1 - | T1 - | | J2 | - | K2 - | L2 PGND | M2 PGND | N2 PGND | P2 V _{OUT} | R2 V _{OUT} | T2 V _{OUT} | | J3 | - | K3 - | L3 - | M3 - | N3 - | P3 - | R3 - | T3 - | | J4 | - | K4 - | L4 PGND | M4 PGND | N4 PGND | P4 V _{OUT} | R4 V _{OUT} | T4 V _{OUT} | | J5 | - | K5 - | L5 - | M5 - | N5 - | P5 - | R5 - | T5 - | | J6 | - | K6 - | L6 PGND | M6 PGND | N6 PGND | P6 V _{OUT} | R6 V _{OUT} | T6 V _{OUT} | | J7 | - | K7 PGND | L7 - | M7 - | N7 - | P7 - | R7 - | T7 - | | J8 | - | K8 | L8 PGND | M8 PGND | N8 PGND | P8 V _{OUT} | R8 V _{OUT} | T8 V _{OUT} | | J9 | - | K9 PGND | L9 - | M9 - | N9 - | P9 - | R9 - | Т9 - | | J10 | - | K10 | L10 PGND | M10 PGND | N10 PGND | P10 V _{OUT} | R10 V _{OUT} | T10 V _{OUT} | | J11 | - | K11 PGND | L11 - | M11 - | N11 - | P11 - | R11 - | T11 - | | J12 | - | K12 - | L12 PGND | M12 PGND | N12 PGND | P12 V _{OUT} | R12 V _{OUT} | T12 V _{OUT} | | J13 | - | K13 PGND | L13 - | M13 - | N13 - | P13 - | R13 - | T13 - | | J14 | - | K14 - | L14 PGND | M14 PGND | N14 PGND | P14 V _{OUT} | R14 V _{OUT} | T14 V _{OUT} | | J15 | - | K15 PGND | L15 - | M15 - | N15 - | P15 - | R15 - | T15 - | | J16 | - | K16 - | L16 PGND | M16 PGND | N16 PGND | P16 V _{OUT} | R16 V _{OUT} | T16 V _{OUT} | | J17 | - | K17 PGND | L17 - | M17 - | N17 - | P17 - | R17 - | T17 - | | J18 | - | K18 - | L18 PGND | M18 PGND | N18 PGND | P18 V _{OUT} | R18 V _{OUT} | T18 V _{OUT} | | J19 | - | K19 - | L19 - | M19 - | N19 - | P19 - | R19 - | T19 - | | J20 | - | K20 - | L20 PGND | M20 PGND | N20 PGND | P20 V _{OUT} | R20 V _{OUT} | T20 V _{OUT} | | J21 | - | K21 - | L21 - | M21 - | N21 - | P21 - | R21 - | T21 - | | J22 | - | K22 - | L22 PGND | M22 PGND | N22 PGND | P22 V _{OUT} | R22 V _{OUT} | T22 V _{OUT} | | J23 | PG00D | K23 - | L23 - | M23 - | N23 - | P23 - | R23 - | T23 - | # PACKAGE DESCRIPTION # Pin Assignment
Tables (Arranged by Pin Number) | PIN NAME | | | |---|--|--| | G1 | PGND | | | H7
H9
H11
H13
H15
H17 | PGND
PGND
PGND
PGND
PGND
PGND | | | J1 | PGND | | | K7
K9
K11
K13
K15
K17 | PGND
PGND
PGND
PGND
PGND
PGND | | | L2
L4
L6
L8
L10
L12
L14
L16
L18
L20
L22 | PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND | | | M2
M4
M6
M8
M10
M12
M14
M16
M18
M20
M22 | PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND | | | N2
N4
N6
N8
N10
N12
N14
N16
N18
N20
N22 | PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND | | | PIN NAME | | | |----------|--------------------|--| | P2 | V _{OUT} | | | P4 | V _{OUT} | | | P6 | V _{OUT} | | | P8 | l V _{OUT} | | | P10 | l V _{OUT} | | | P12 | l V _{OUT} | | | P14 | l V _{OUT} | | | P16 | l V _{OUT} | | | P18 | V _{OUT} | | | P20 | V _{OUT} | | | P22 | V _{OUT} | | | R2 | V _{OUT} | | | R4 | V _{OUT} | | | R6 | V _{OUT} | | | R8 | V _{OUT} | | | R10 | V _{OUT} | | | R12 | V _{OUT} | | | R14 | V _{OUT} | | | R16 | V _{OUT} | | | R18 | V _{OUT} | | | R20 | l V _{OUT} | | | R22 | V _{OUT} | | | T2 | V _{OUT} | | | T4 | l V _{OUT} | | | T6 | V _{OUT} | | | T8 | V _{OUT} | | | T10 | V _{OUT} | | | T12 | V _{OUT} | | | T14 | V _{OUT} | | | T16 | V _{OUT} | | | T18 | V _{OUT} | | | T20 | V _{OUT} | | | T22 | V _{OUT} | | | PIN NAME | | |------------------------------------|---| | A3
A5
A7
A9
A11
A13 | VIN
VIN
VIN
VIN
VIN
VIN | | B1 | V _{IN} | | C10
C12
C14 | V _{IN}
V _{IN}
V _{IN} | | D1 | V _{IN} | | E10
E12
E14 | V _{IN}
V _{IN}
V _{IN} | | F1 | V _{IN} | | PIN NAME | | |----------|-------------------| | A15 | f_{ADJ} | | A17 | SV_{IN} | | A19 | $EXTV_CC$ | | A21 | V _{OSET} | | B23 | COMP | | D23 | SGND | | F23 | RUN/SS | | G23 | FCB | | J23 | PG00D | | | | # TYPICAL APPLICATION #### 1.8V, 5A Regulator # **RELATED PARTS** | PART NUMBER | DESCRIPTION | COMMENTS | |---------------|--|---| | LTC2900 | Quad Supply Monitor with Adjustable Reset Timer | Monitors Four Supplies; Adjustable Reset Timer | | LTC2923 | Power Supply Tracking Controller | Tracks Both Up and Down; Power Supply Sequencing | | LT3825/LT3837 | Synchronous Isolated Flyback Controllers | No Optocoupler Required; 3.3V, 12A Output; Simple Design | | LTM4600 | 10A DC/DC μModule | 10A Basic DC/DC μModule | | LTM4601 | 12A DC/DC µModule with PLL, Output Tracking/
Margining and Remote Sensing | Synchronizable, PolyPhase® Operation to 48A, LTM4601-1 Version has no Remote Sensing, Fast Transient Response | | LTM4603 | 6A DC/DC μModule with PLL and Output Tracking/
Margining and Remote Sensing | Synchronizable, PolyPhase Operation, LTM4603-1 Version has no Remote Sensing, Fast Transient Response | Polyphase is a registered trademark of Linear Technology Corporation.