HS-134 Carbon Monoxide sensor element #### 1. Characteristics - 1. 1. High sensitive and good selectivity to low carbon monoxide concentration. - 1. 2 .Long life and reliable stability. ### 2. Structure, configuration, symbol of components. - Structure and configuration of HS-134 is shown as Fig. 1, sensitive components composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, active carbon filtering layer include and made by plastic and stainless steel net. - 2.2. Active carbon Particle reduces interference from gases of NOx, Alkane, etc. - 2.3 The enveloped HS-134 gas sensitive components have 6 pin, 4 of them are used to take signals(A, B), and other 2 (H) are used for providing heating current. ### 3. Working Principle A. Standard circuit As shown in Fig 2, standard measuring circuit of HS-134 include 2 parts, one is heating circuit. Have time control function (the high voltage and the low voltage work circularly.) The second is the signal output circuit, it can accurately respond changes of surface resistance of the sensor. b. The surface resistance of the sensor Rs is obtained through effected voltage signal output of the load resistance RL which series-wound. The relationship between them as below: Rs\RL = (Vc-VRL) / VRL Fig. 3 is relative curve between output signal VRL(measured by using Fig.2 circuit and CO gas concentration. Fig.3 # 4. Figure Base on Fig. 2 circuit, Fig. 4 is the signal output curve when the sensor is moved form clean air to carbon monoxide (CO) gas environment. Those data was measured after heating period 2.5 minute from high voltage to low voltage. Environment temperature will effect to sensitivity which relative curve show as Fig.5 Fig.5 Sensitive layer of HS-134 was made of SnO2 material. So, it has excellent long term stability. Its service life can reach 5 years under follow standard operating condition. # 5.Detail description ### A. Standard work condition | Symbol | Description | technical condition | Remark | |--------|------------------------|---------------------|-----------------------| | Vc | circuit voltage | 5V±0.1 | Ac or Dc | | VH (H) | Heating voltage (high) | 4V±0.1 | Ac or Dc | | VH (L) | Heating voltage (low) | 1.4V±0.1 | Ac or Dc | | RL | Load resistance | can be adjustable | Ps <25mw | | RH | Heating resistance | 33 ^Ω ±5% | A t 2 0 ℃ temperature | | TH (H) | Heating time (high) | 60±1 seconds | | | TH (L) | Heating time (low) | 90±1 seconds | 4 | | Ps | Heating consumption | less than 25mw | | ### b. Environment conditions | Symbol | Description | Technical conditions | Remark | |--------|-----------------------|---|--------------------------| | Tao | Operating temperature | -20℃-50℃ | | | Tas | Storage temperature | -20℃-50℃ | Advice using scope | | RH | Relative humidity | Less than 95%RH | | | O2 | Oxygen concentration | 21%(stand condition) Oxygen concentration can affect the sensitivity characteristic | Minimum value is over 2% | # c. Sentitivity characteristic | Symbol | Parameters | Technical parameters | remark | |--------------------|--|----------------------|-------------------------------| | Rs | Surface
resistance
Of sensitive
body | 2-20k | In 100ppm carbon
Monooxide | | a (300/100ppm) | Concentration slope rate | Less than 0.5 | Rs
(300ppm)/Rs(100pp
m) | | Standard operating | Temperature:20 $^{\circ}$ C \pm 2 $^{\circ}$ C Relative humidity:65% \pm 5% RL: 10K $^{\Omega}$ \pm 5% | | | | Condition | Vc:5V±0.1V V | H:4V±0.1V VL: | 1.4V±0.1V | | Preheat time | No less than Detecting range:20ppm-1000ppm carbon 48 hours monoxide | | | #### d. Mechanical characteristic | Items | Conditions | Property | |-----------|----------------------------------|------------------------| | | Frequency 100cpm | | | Vibration | Vertical vibration amplitude 4mm | Should be conformed to | | | Time 1 hour | normal sensitivity | | Punch | Acceleration 100G | | | | Punch times 5 | | # e. The relative sensitivity of HS-134 in different gases | Name of gas | With active carbon filter
Rs(100ppm)/Rs(100ppmCO) | Without active carbon filter Rs(100ppm)/Rs(100ppmCO) | |----------------|--|--| | Methane | Can not measure | Can not measure | | Propane | Can not measure | 6.58 | | Isobutane | Can not measure | Can not measure | | Hydrogen | 6.25 | 6.0 | | Alcohol | Can not measure | 2.56 | | Isopropanol | Can not measure | 3.48 | | Methyl benzene | Can not measure | 20.98 | | Ethyl acetate | Can not measure | 3.28 | | Benzene | Can not measure | 31.20 | | Heptane | Can not measure | 3.60 | | Carbon dioxide | Can not measure | Can not measure | | Hydrogen | Can not measure | 0.02 | | Sulphurate | | 1 | ### 6. Sensitivity adjustment In different concentrations of carbon monoxide, The resistance value of HS-134 is different. So, It is necessary to adjust the sensitivity which adjusting step as below: - a. Connect the sensor to the application circuit. - b. Turn on the power, preheating over 48 hours (if long time storage). - c. Adjust the load resistance RL until you get a signal value which is respond to a certain carbon monoxide concentration. ### 7. Measurement circuit having temperature and humidity compensation Different of temperature and humidity will affect to HS-134 sensitivity. So, when accurately measuring circuit need compensation function of temperature and humidity. Include the compensation functions, please check follow reference circuit.