

Intelligent Infrared Carbon Dioxide Module (Model: MH-Z14A)

User's Manual V1.4

Issue Date. Mar. 31st,2021

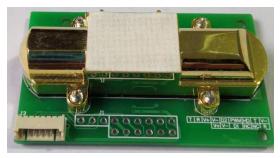
Zhengzhou Winsen Electronics Technology CO., LTD.

Statement

The copyright of this manual belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can't spread through electronic, copying, record ways. Thanks for purchasing our product. In order to enable customers to better use the product and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes ...etc., please in kind prevail.

We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users' comments on optimized using way are welcome.


Please keep the manual properly, in order to get help if you have questions during the usage in the future.

Zhengzhou Winsen Electronics Technology CO., LTD

MH-Z14A NDIR CO2 Module

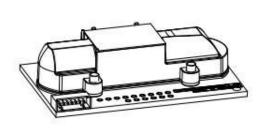
1. Profile

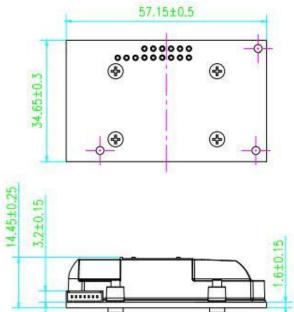
MH-Z14A NDIR Infrared gas module is a common type, small size sensor, using non-dispersive infrared (NDIR) principle to detect the existence of CO_2 in the air, with good selectivity, non-oxygen dependent and long life. Built-in temperature sensor can do temperature compensation; and it has digital output and PWM output. This common type infrared gas sensor is developed by the tight integration of mature infrared absorbing gas detection technology, Precision optical circuit design and superior circuit design.

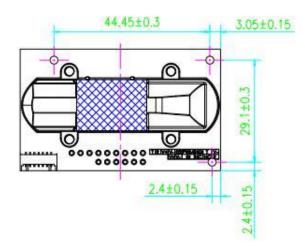
3. Main Features

Chamber is gold plated, water-proof and anti-corrosion High sensitivity, low power consumption Good stability Temperature compensation, excellent linear output Multiple output modes: UART, PWM Long lifespan Anti-water vapor interference, anti-poisoning

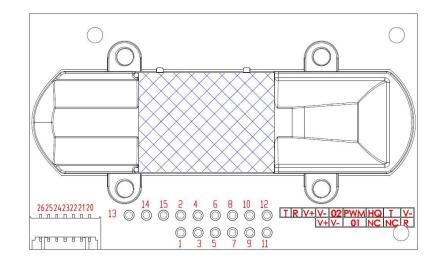
2. Applications

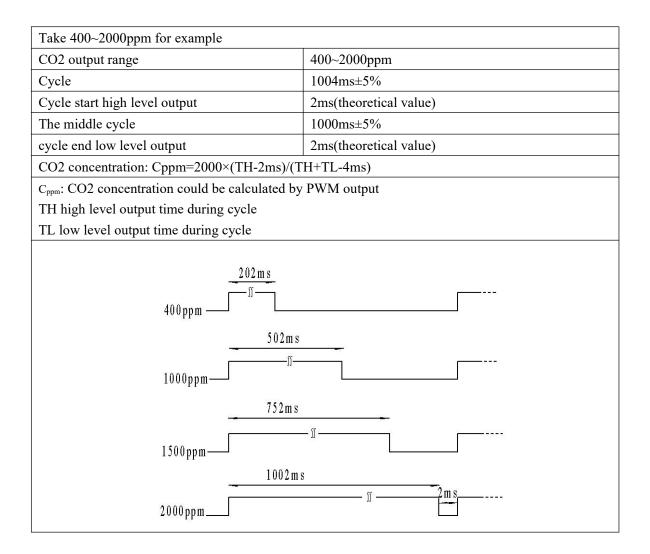

*HVAC refrigeration	*Air cleaner device	*Indoor air quality monitoring
*Smart home	*Ventilation system	


4. Main technical parameters


Model No.	MH-Z14A
Detection Gas	CO2 gas
Working voltage	DC (5.0±0.1V)
Average current	< 40 mA (@5V supply)
Peak current	125mA (@5V supply)
Interface level	3.3 V (5V compatible)
Measuring range	400~10000ppm optional
Outout sizes al	Serial port(UART) (TTL)
Output signal	PWM
Preheat time	1min
Response Time	T90 < 120s
Working temperature	-10°C ~ 50°C
Working humidity	0~95%RH(no condensation)
Storage temperature	-20°C ~ 60°C
Weight	14 g
Lifespan	>10 years

Target Gas	Measuring Range	Resolution	Accuracy
	400~2000ppm		(
Carbon Dioxide (CO2)	400~5000ppm	1ppm	±(50ppm +5%reading value)
(002)	400~10000ppm		


5. Structure


6. Definition for pins

PIN No	Description
1,15,23	Power positive (Vin)
2,3,12, 22	Power negative (GND)
4,5,21	Analog output
6,26	PWM
8, 20	HD(for zero-point calibration, low level lasting for
	over 7 sec is effective)
7,9	NC
11, 14, 24	UART (RXD) TTL data input
10,13, 25	UART (TXD) TTL data output

7. Two Output ways

• PWM output

•Serial port output (UART)

Hardware connection

Connect module's Vin-GND-RXD-TXD to users' 5V-GND-TXD-RXD. (Users must use TTL level. If RS232 level, it must be converted.)

Software setting

Set serial port baud rate be 9600, data bit 8 bytes, stop bit 1byte, parity bit null.

Command List:

0x86	Gas concentration
0x87	Calibrate zero point (ZERO)
0x88	Calibrate span point (SPAN)
0x79	ON/OFF Self-calibration function for zero point
0x99	Detection range setting

0x86- Read CO2 concentration

Sending c	ommand							
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Reserved	Command	-	-	-	-	-	Checksum
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79
Return va	lue	_						
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Command	Concentration	Concentration	-	-	-	-	Checksum
		(High 8 Byte)	(Low 8 Byte)					
0xFF	0x86	HIGH	LOW	-	-	-	-	Checksum

CO2 concentration = HIGH * 256 + LOW

For example:

Send command FF 01 86 00 00 00 00 00 79, Return value FF 86 02 20 00 00 00 00 58

How to calculate concentration: convert hexadecimal 02 into decimal 2, hexadecimal 20 into decimal 32, then 2*256+32=544ppm

0x79- On/Off Self-calibration for Zero Point

Send command-No return value

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Reserved	Command	-	-	-	-	-	Checksum
0xFF	0x01	0x79	0xA0/0x00	0x00	0x00	0x00	0x00	Checksum

For example:

ON this function, send command: FF 01 79 A0 00 00 00 00 E6

OFF this function, send command: FF 01 79 00 00 00 00 00 86

NOTE: This function is on when Byte3 is 0xA0 while this function is off when Byte3 is 0x00.

Default status is "this function is on".

0x99- Det	ection range se	tting						
Send comr	nand-No return	value						
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start	Reserved	Com	Reserved	Detection	Detection	Detection	Detection	Check
Byte		mand		range 24~32	range 16~23	range 8~15	range 0~7	sum
				bit	bit	bit	bit	
0xFF	0x01	0x99	0x00	Data 1	Data 2	Data 3	Data 4	Check
								sum
Note: Dete	ection range sh	ould be 0	~2000, 0~5000	, or 0~10000ppr	n.			
For examp	le: set 0~200	Oppm det	ection range, se	end command: F	F 01 99 00 00 00 0	07 D0 8F		
	set 0~10000	ppm det	ection range, se	nd command: Fl	= 01 99 00 00 00 2	7 10 2F		

1. Checksu	m calculatio	on method						
Checksum	= (Negative ((Byte1+Byte2+	Byte3+Byte4+	Byte5+Byte6+Byt	e7))+1			
For exampl	e:							
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Reserved	Comman d	-	-	-	-	-	Check sum
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	Check sum
	-	-0x87 = 0x78 + 0x01 = 0x78						
	language	char *packe	.+)					
{	neckouni	chai packe	<i>(</i>)					
	i, checksu	m;						
for(i	= 1; i < 8;	i++)						
{								
	checksum	+= packet[i]	;					
}								
		ff – checksu	m;					
	ksum += 1 n obooksuu	-						
retur ۱	n checksu	11,						
1								

8.Zero Point Calibration

About zero point calibration:

This module has three methods for zero point calibration: hand-operated method, sending command method and self-calibration. All the zero point is at 400ppm CO2.

Hand-operated method: Connect module's HD pin to low level(0V), lasting for 7 seconds at least. Before calibrating the zero point, please ensure that the sensor is stable for more than 20 minutes at 400ppm ambient environment.

Sending command method:

Zero and Span point calibration can be achieved by sending a calibration command to the sensor via the serial port (URAT). Zero and SPAN point calibration commands are as follows:

0x87-ZERO	POINT CALIB	RATION						
Send comm	and-no returi	n value						
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Reserved	Command			<i>.</i>	0750	171	Checksum
0xFF	0x01	0x87	0x00	0x00	0x00	0x00	0x00	0x78
Fanavanal		0.07	0,00	0,000	UNUU	0,00	UNDU	UNI O

For example:

Put the module in 400ppm standard CO2 gas or clean outdoor environment for at least 20 min;

Send command FF 01 87 00 00 00 00 00 78 for zero point calibration.

Caution: Forbid sending this command in other environment except above.

Sena comm	and-no retur	n value						
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Reserved	Command	Span(High 8 Byte)	Span(low 8 Byte)		-	1970	Checksum
OxFF	0x01	0x88	HIGH	LOW	0x00	0x00	0x00	Checksum
Send comm	1 and FF 01 88	07 D0 00 00 0	00 A0 for span calibrat	tion				
Caution: Ze	nand FF 01 88 ro calibration	07 D0 00 00 0		tion ation.				

Self-calibration:

After the module works for some time, it can judge the zero point intelligently and do the zero calibration automatically. The calibration cycle is every 24 hours since the module is power on. The zero point is 400ppm. This method is suitable for office and home environment, not suitable for agriculture greenhouse, farm, refrigerator, etc.. If the module is used in latter environment, please turn off this function.

9. Notes

9.1 Please avoid the pressure of its gilded plastic chamber from any direction, during welding, installation, and use.

9.2 When placed in small space, the space should be well ventilated, especially for diffusion window.

9.3 The module should be away from heat, and avoid direct sunlight or other heat radiation.

9.4 The module should be calibrated termly, the suggested period is not longer than 6 months.

9.5 Do not use the sensor in the high dusty environment for long time.

9.6 To ensure the normal work, the power supply must be among 4.5V~5.5V DC rang, the power current must be not less than 150mA. Out of this range, it will result in the failure of the sensor. (The concentration output is low, or the sensor can not work normally.)

9.7 During the zero point calibration procedure by manual, the sensor must work in stable gas environment (400ppm) for over 20 minutes. Connect the HD pin to low level (0V) for over 7 seconds.