

PVMI-4TE-10.6-1×1-T08-wZnSeAR-36

$2.0-12.0~\mu m$ HgCdTe four-stage thermoelectrically cooled, optically immersed photovoltaic multiple junction detector

PVMI-4TE-10.6-1×1-T08-wZnSeAR-36 is four-stage thermoelectrically cooled IR photovoltaic multiple junction detector based on sophisticated HgCdTe heterostructure for the best performance and stability. The device is designed for the maximum performance at 10.6 μ m. Detector element is monolithically integrated with hyperhemispherical GaAs microlens in order to improve performance of the device. 3° wedged zinc selenide anti-reflection coated (wZnSeAR) window prevents unwanted interference effects.

Spectral response (T_a = 20°C)

Specification $(T_a = 20^{\circ}C)$

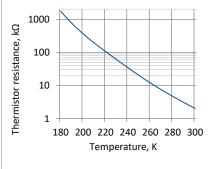
Parameter	Detector type
	PVMI-4TE-10.6-1×1-TO8-wZnSeAR-36
Active element material	epitaxial HgCdTe heterostructure
Cut-on wavelength λ _{cut-on} (10%), μm	≤2.0
Peak wavelength λ _{peak} , μm	8.5±2.0
Optimum wavelength λ _{opt} , μm	10.6
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), μ m	≥12.0
Detectivity D*(λ_{peak}), cm·Hz ^{1/2} /W	≥3.0×10 ⁹
Detectivity D*(λ _{opt}), cm·Hz ^{1/2} /W	≥2.5×10 ⁹
Current responsivity $R_i(\lambda_{peak})$, A/W	≥0.25
Current responsivity $R_i(\lambda_{opt})$, A/W	≥0.18
Time constant τ, ns	≤3
Resistance R, Ω	≥120
Active element temperature T _{det} , K	~195
Optical area A _o , mm×mm	1×1
Package	TO8
Acceptance angle Φ	~36°
Window	wZnSeAR

Features

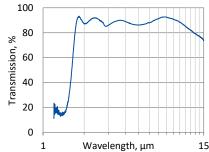
- High performance
- Wide spectral range from 2.0 to 12.0 µm
- No bias required
- No flicker noise
- Operation from DC to high frequency
- Sensitive to IR radiation polarisation
- Versatility
- Quantity discounted price
- Fast delivery

Applications

- CO₂ laser (10.6 μm) measurements
- Laser power monitoring and control
- Laser beam profiling and positioning
- Laser calibration
- Semiconductor manufacturing
- Glucose monitoring
- Detection of hazardous chemicals (i.e. ammonia) in the air

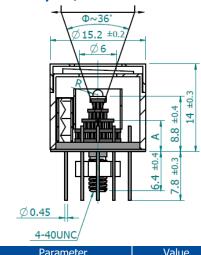

Related product

LabM-I-10.6 detection module

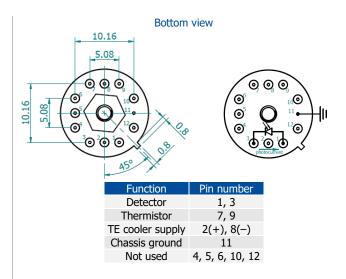

Four-stage thermoelectric cooler parameters

Parameter	Value
T _{det} , K	~195
V _{max} , V	8.3
I _{max} , A	0.4
Q _{max} , W	0.28

Thermistor characteristics



Spectral transmission of wZnSeAR window (typical example)



Parameter	Value
Immersion microlens shape	hyperhemisphere
Optical area Ao, mm×mm	1×1
R, mm	0.8
A, mm	6.4±0.4

 Φ – acceptance angle

A – distance from the bottom of the 4TE-TO8 header to the focal plane

R – hyperhemisphere microlens radius

Precautions for use and storage

- Heatsink with thermal resistance of ~1 K/W is necessary to dissipate heat generated by 4TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations for optically immersed detector:
 - irradiance with CW or single pulse longer than 1 μs irradiance on the apparent optical active area must not exceed 2.5 W/cm²,
 - irradiance of the pulse shorter than 1 μs must not exceed 10 kW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.