

PVMI-2TE-10.6-1×1-TO8-wZnSeAR-36

$2.0-12.0~\mu m$ HgCdTe two-stage thermoelectrically cooled, optically immersed photovoltaic multiple junction detector

PVMI-2TE-10.6-1×1-T08-wZnSeAR-36 is two-stage thermoelectrically cooled IR photovoltaic multiple junction detector based on sophisticated HgCdTe heterostructure for the best performance and stability. The device is designed for the maximum performance at 10.6 μ m. Detector element is monolithically integrated with hyperhemispherical GaAs microlens in order to improve performance of the device. 3° wedged zinc selenide anti-reflection coated (wZnSeAR) window prevents unwanted interference effects.

Spectral response (T_a = 20°C)

Exemplary spectral detectivity, the spectral response of delivered devices may differ.

Specification (T_a = 20°C)

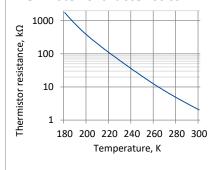
Parameter	Detector type
	PVMI-2TE-10.6-1×1-TO8-wZnSeAR-36
Active element material	epitaxial HgCdTe heterostructure
Cut-on wavelength $\lambda_{\text{cut-on}}$ (10%), μm	≤2.0
Peak wavelength λ _{peak} , μm	8.5±1.5
Optimum wavelength λ _{opt} , μm	10.6
Cut-off wavelength $\lambda_{\text{cut-off}}$ (10%), μm	≥12.0
Detectivity D*(λ _{peak}), cm·Hz ^{1/2} /W	≥1.5×10 ⁹
Detectivity D*(λ_{opt}), cm·Hz ^{1/2} /W	≥1.0×10 ⁹
Current responsivity R _i (λ _{peak}), A/W	≥0.15
Current responsivity R _i (λ _{opt}), A/W	≥0.1
Time constant τ, ns	≤3
Resistance R, Ω	≥90
Active element temperature T _{det} , K	~230
Optical area A _o , mm×mm	1×1
Package	TO8
Acceptance angle Φ	~36°
Window	wZnSeAR

Features

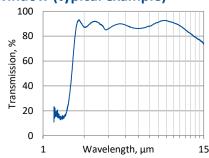
- Wide spectral range from 2.0 to 12.0 μm
- No bias required
- No flicker noise
- Operation from DC to high frequency
- Sensitive to IR radiation polarisation
- Versatility
- Quantity discounted price
- Fast delivery

Applications

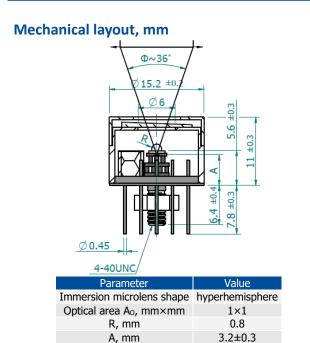
- CO₂ laser (10.6 μm) measurements
- Laser power monitoring and control
- Laser beam profiling and positioning
- Laser calibration
- Dentistry

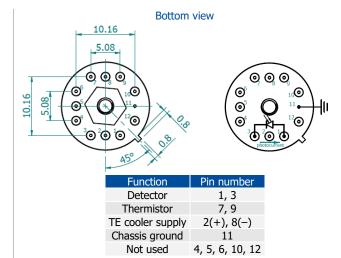

Related product

UM-I-10.6 detection module


Two-stage thermoelectric cooler parameters

parameters	
Parameter	Value
T _{det} , K	~230
V _{max} , V	1.3
I _{max} , A	1.2
Q _{max} , W	0.36


Thermistor characteristics



Spectral transmission of wZnSeAR window (typical example)

Φ – acceptance angle

A – distance from the bottom of the 2TE-TO8 header to the focal plane

R – hyperhemisphere microlens radius

Precautions for use and storage

- Heatsink with thermal resistance of ~2 K/W is necessary to dissipate heat generated by 2TE cooler.
- Operation in 10% to 80% humidity and -20°C to 30°C ambient temperature.
- Beam power limitations for optically immersed detector:
 - irradiance with CW or single pulse longer than 1 μs irradiance on the apparent optical active area must not exceed 2.5 W/cm²
 - irradiance of the pulse shorter than 1 μs must not exceed 10 kW/cm².
- Storage in dark place with 10% to 90% humidity and -20°C to 50°C ambient temperature.