

Arduino based TME Educational Board

2

www.TMEeducation.com

www.TMEeducation.com

TME-EDU-ARD-2

3

Contents

Introduction ... 4
What is Arduino? ... 4
Basic kit description .. 4

List of available peripherals .. 5
Safety information ... 5
Power supply .. 7
Necessary software .. 7
Programming the educational board .. 8

Comments ... 8
Uploading the programme to the board .. 9

Peripherals support in practice ... 9
Simple, single-colour LED (LED1 - D13) .. 9
Using definitions .. 10
Delays ... 11
Buzzer with generator (D2) ... 12
Simple, three-colour (RGB) LED (LED2 - D9, D10, D11) ... 12
Control of the RGB diode with PWM signal .. 14
5-button keyboard (D4, D5, D6, D7, D8) ... 16
Communication with a computer via UART .. 17
Sending information to Arduino ... 18
Text LCD display 2x16 characters .. 19
Support for analog sensors ... 21
Analog sensors - potentiometer (A1) .. 21
Analog sensors - light sensor (A3) .. 23
Analog sensors - temperature sensor (A2) ... 24
Analog sensors - microphone (A0) ... 25
Expander and 7-segment display ... 26
Expander and 7-segment display (digits) .. 28
For loop ... 29
While loop ... 29
OLED graphic display ... 30
 IR receiver (D3) .. 31
Support of digitally controlled RGB LEDs (D12) ... 32

Bluetooth module .. 34
Arduino shields connectors .. 35
Configuration jumpers .. 35
List of Arduino functions ... 36
List of libraries with licenses ... 40

Arduino based TME Educational Board

4

Introduction

The TME-EDU-ARD-2 educational board for learning of Arduino programming has been prepared

for the needs of the TME Education programme. More information on the subject can be found at:

• https://www.tmeeducation.com

• https://fb.com/tmeeducation

This documentation describes the use of peripherals included in the TME-EDU-ARD-2 educational

board, which works with the popular Arduino UNO controller. The board has over 20

peripherals using all available outputs of the controller. The elements are connected, however, it is

still possible to change these connections using the jumpers (more on this later).

What is Arduino?
Arduino platform is one of the most popular solutions dedicated to beginners to electronics in the

world. It integrates popular AVR microcontrollers and dedicated, beginners-friendly programming

language (based on C / C++) into a coherent and easy-to-use tool with an infinite number of

applications.

Basic kit description
There is a place for the Arduino UNO controller in the top left-hand corner of the board. In the bottom

left-hand corner there is a section with displays (LCD and OLED) and with LEDs. To the right of the

display there are 5 large monostable buttons.

TME-EDU-ARD-2

5

On the right-hand side there is an IR receiver, a potentiometer, light sensor, buzzer, temperature

sensor, microphone and a 7-segment display with a pin expander. In the upper, middle part of the

board, you can find a connector for external power, a set of jumpers to reconfigure the connections

and place for a Bluetooth module and any additional shield with other accessories.

List of available peripherals

The following peripherals are connected to the Arduino UNO:

• Simple, single-colour LED (LED1 - D13).

• Simple, three-colour (RGB) LED (LED2 - D9, D10, D11).

• Digitally controlled, three-colour (RGB) LED WS2812 (LED3 - D12), to which another 4,

identical LEDs located on the bottom-side of the board are connected in series.

• Keyboard with 5 monostable buttons arranged in the forward (D6), backward (D5),

left (D4), right (D7) and centre (D8).

• Analog sensors:

o Potentiometer (A1),

o Light sensor (A3),

o Thermometer (A2),

o Microphone (A0).

• IR receiver (D3).

• Buzzer with generator (D2).

• Text LCD display 2x16 characters, connected via the I2C expander (address: 0x20).

• OLED graphic display with I2C interface (address: 0x3C).

• 7-segment display connected via the I2C expander (address: 0x24).

Additionally, the board has:

• LED (POWER) indicating correct powering of the system.

• A small monostable button (RESET) that allows you to reset the Arduino controller.

• A small monostable button (BT AT Mode) to enter into AT commands mode of the BT

module.

• A sliding two-position switch (BT ON / BT OFF) to disconnect the optional BT module.

• 4 measuring points in the form of meshes (connected to D9, D10, D11, GND).

Safety information

When operating the device, avoid direct contact with the PCB (touching electronic components and

paths), because in extreme situations it may damage the board. The exception are 7 buttons and a

potentiometer, which can be used in programmes loaded onto the board.

Arduino based TME Educational Board

6

Any changes to the configuration of jumpers

and connecting additional modules should be performed

when the board is disconnected from power source!

Before turning on the board, it is also worth making sure that the plate was not accidentally placed

on metal objects (e.g. on a screwdriver), which could close the signals flowing under the plate.

TME-EDU-ARD-2

7

Power supply

The educational board can be powered in one of the three ways:

• USB connector (1) placed on the Arduino board (power supply from the computer's USB

port or from the 5V adapter allowing to connect a cable with a USB type B connector).

• External power connector (2) on the Arduino board (from 7V to 12V).

• External power connector (3) placed on the expansion board (from 7V to 12V).

In the vast majority of cases, it’s best to power the educational board

with a USB cable that is used for Arduino programming.

Necessary software

For programming the board you need the Arduino IDE environment, which can be downloaded for

free from the project website, i.e.: https://arduino.cc. From the page navigation menu, select the

"SOFTWARE" tab. On the newly opened page, go to the "Download the Arduino IDE" section and

select the appropriate version for the given system from the list on the right.

Arduino based TME Educational Board

8

Then you will be asked for voluntary financial support for the project. At this stage, you can donate

or download the software for free by selecting the "JUST DOWNLOAD" button. At this point, the

installer will start downloading.

Programming the educational board

Programmes written for Arduino are called sketches. All programmes should include the setup and

loop functions. Instructions included in the setup function are performed only once (when turning

Arduino on). All settings and instructions to be performed at the beginning of the device operation

should be placed here (immediately after switching on).

The loop function acts as an infinite loop. Instructions contained inside it will be performed all the

time. This loop starts after the instructions inside the setup function are completed.

A blank sketch, which should be the starting point for each programme:

// the setup function runs once when you press reset or power the board

void setup() {

}

// the loop function runs over and over again forever

void loop() {

}

Comments
It’s possible to add comments inside the programme, i.e. information that are skipped when sending

a sketch to Arduino, and they are only meant to make it easier for programmers to understand the

code. Comments can be placed in one line (then they should be preceded by "//" characters) or in

many lines (then the comment text should be placed between "/*" and "*/" characters).

void setup() {

 // comment in one line

 /*

 multi-line

 comment

 */

}

Comments can be placed in any part of the programme. Often they are also used to temporarily

"turn off" a part of the programme, e.g. for testing time.

TME-EDU-ARD-2

9

Uploading the programme to the board
To upload the programme to the Arduino, first you need to (one time only):

1. connect the board with a USB cable to the computer,

2. from the Arduino IDE toolbar choose: Tools > Board > Arduino/Genuino UNO,

3. from the Arduino IDE toolbar select: Tools > Port and there check the number of the

COM port, next to which the name Arduino UNO appeared.

Then, in order to compile the programme (i.e. translate it into a language understandable for

Arduino) and upload it to the board, click the option Upload, which is visible in the Arduino IDE

menu in the form of a round icon with an arrow to the right. After programme is loaded correctly, a

corresponding message will appear at the bottom of the IDE, e.g. "Upload completed", and after a

while the code will start working on the board.

If an optional Bluetooth module is connected to the system,

the appropriate slide switch should be set to BT OFF

when the programme is loaded onto the board.

Peripherals support in practice

This part of the manual describes the most important information related to turning on all peripherals

that are located on the board. The elements have been described in order from the easiest to the

most difficult, thanks to which it is possible to gradually learn different aspects of the Arduino

language in practice.

Simple, single-colour LED (LED1 - D13)
The educational board has been equipped with one, standard LED diode, which is located in the

lower left corner of the board. There is a marking D13 next to the diode, which means that this

element can be operated in a digital way (D from digital). The number "13" is the number of the

Arduino pin to which the element is connected with the default configuration of jumpers.

Similar descriptions have been placed next to all peripherals.

The diode was connected to the Arduino output with an anode

(through the resistor). It means that in order to turn on the diode, the

logic high (or "1") should be set at the digital output 13.

The programme that turns the diode on should start with setting the

pin as an output. To do this, use the pinMode function (pin_number,

OUTPUT), in which we replace pin_number with the pin number to

be used in the output mode.

From that moment on, it will be possible to switch on or off the diode

with the digitalWrite(pin_number, status) function anywhere in the

Arduino based TME Educational Board

10

programme. Where, similarly in place of pin_number we insert pin number to which the diode was

connected, and in the place described as status, we give one of the two possible options: LOW,

that is logical low state (or “0”) or HIGH, that is logical high state (or “1”).

Setting the low state is equivalent to giving the mass potential to the output,

and setting the high state is equivalent to giving a positive power bus

to the output, i.e. 5 V in this case.

The programme that turns the diode on will look like this:

// the setup function runs once when you press reset or power the board

void setup() {

 // pin configuration

 pinMode(13, OUTPUT);

 // turn the LED on

 digitalWrite(13, HIGH);

}

// the loop function runs over and over again forever

void loop() {

}

Both instructions are included in the setup function, because after switching on Arduino, we turn the

diode on only once and we do not have to do anything with it.

Using definitions
In the above programme, the pin number to which the diode is connected had to be entered in two

places (in the configuration of the output and in the instruction turning on the diode). To simplify

later changes, information about the pin number can be written in the form of definitions e.g.:

#define LED1 13

From now on, the compiler will automatically substitute the number "13" at every place in the

programme where "LED1" is placed. This is particularly convenient when making changes to the

pins to which the peripherals are connected in more complex programmes.

The programme turning on the diode with the use of definitions may look like this:

#define LED1 13

// the setup function runs once when you press reset or power the board

void setup() {

 // pin configuration

 pinMode(LED1, OUTPUT);

TME-EDU-ARD-2

11

 // turn the LED on

 digitalWrite(LED1, HIGH);

}

// the loop function runs over and over again forever

void loop() {

}

Delays
When creating many programmes, it is useful to be able to enter a delay. A popular example is a

programme flashing a diode. In practice, this means it’s necessary to turn on the diode, wait for a

certain time, turn off the diode, wait for a certain time and start the cycle from the beginning. For

this purpose, in Arduino programming, the delay(time) function is used, where for time we enter the

duration of the delay in milliseconds (1 second = 1000 milliseconds).

During the delay, the entire programme is stopped (and stands still)!

An example of a programme flashing a diode:

#define LED1 13

// the setup function runs once when you press reset or power the board

void setup() {

 // pin configuration

 pinMode(LED1, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 // turn the LED on

 digitalWrite(LED1, HIGH);

 delay(500); // wait for 500 ms

 // turn the LED off

 digitalWrite(LED1, LOW);

 delay(200); // wait for 200 ms

}

This time, the diode control instructions have been moved to the loop function, because they are to

be executed all the time (in the loop). Of course, the instruction configuring the pin (to which the

diode is connected) as an output remained inside the setup function (because the configuration is

done only once).

Arduino based TME Educational Board

12

Buzzer with generator (D2)
A buzzer with a generator (sound emitting

device) is connected to pin D2. Controlling of this

device is performed in the same way as the above

example with a diode. The logical "1" on the

Arduino output will make the buzzer sound.

An sample programme using a sound generator:

#define BUZ 2

// the setup function runs once when you

press reset or power the board

void setup() {

 // pin configuration

 pinMode(BUZ, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 // turn the buzzer on

 digitalWrite(BUZ, HIGH);

 delay(1000); // wait for 1000 ms

 // turn the buzzer off

 digitalWrite(BUZ, LOW);

 delay(200); // wait for 200 ms

}

Simple, three-colour (RGB) LED (LED2 - D9, D10, D11)
There is LED2 diode

on the board, which is

an RGB diode. This

means that its housing

has 3 luminous

structures: red (R),

green (G) and blue (B).

Using the descriptions

that are on the board,

you can create the

appropriate definitions:

#define LED2R 9

#define LED2G 10

#define LED2B 11

TME-EDU-ARD-2

13

Controlling of individual LEDs is performed in an analogous way to the previously described LED1.

We start from the pin configuration as input, and then control each colour separately:

#define LED2R 9

#define LED2G 10

#define LED2B 11

// the setup function runs once when you press reset or power the board

void setup() {

 // pin configuration

 pinMode(LED2R, OUTPUT);

 pinMode(LED2G, OUTPUT);

 pinMode(LED2B, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 // turn selected color on and turn off other

 digitalWrite(LED2R, HIGH);

 digitalWrite(LED2G, LOW);

 digitalWrite(LED2B, LOW);

 delay(500); // wait for 500 ms

 // turn selected color on and turn off other

 digitalWrite(LED2R, LOW);

 digitalWrite(LED2G, HIGH);

 digitalWrite(LED2B, LOW);

 delay(500); // wait for 500 ms

 // turn selected color on and turn off other

 digitalWrite(LED2R, LOW);

 digitalWrite(LED2G, LOW);

 digitalWrite(LED2B, HIGH);

 delay(500); // wait for 500 ms

}

Of course, it is also possible to light two / three colours at the same time. Thanks to this, it is possible

to mix colours and obtain different, intermediate colours. An example of such a programme:

#define LED2R 9

#define LED2G 10

#define LED2B 11

// the setup function runs once when you press reset or power the board

void setup() {

// pin configuration

 pinMode(LED2R, OUTPUT);

 pinMode(LED2G, OUTPUT);

 pinMode(LED2B, OUTPUT);

}

Arduino based TME Educational Board

14

// the loop function runs over and over again forever

void loop() {

 // different color settings

 digitalWrite(LED2R, HIGH);

 digitalWrite(LED2G, HIGH);

 digitalWrite(LED2B, LOW);

 delay(500); // wait for 500 ms

 // different color settings

 digitalWrite(LED2R, LOW);

 digitalWrite(LED2G, HIGH);

 digitalWrite(LED2B, HIGH);

 delay(500); // wait for 500 ms

 // different color settings

 digitalWrite(LED2R, HIGH);

 digitalWrite(LED2G, LOW);

 digitalWrite(LED2B, HIGH);

 delay(500); // wait for 500 ms

}

Control of the RGB diode with PWM signal
On some Arduino terminals (marked with the "~" sign) it is possible to obtain a square wave signal

with variable duty cycle (PWM). In the TME-EDU-ARD-2 educational board all colours of the RGB

diode have been connected to such terminals. Thanks to this, it is additionally possible to control

the brightness of each of them.

In order to generate the PWM signal, use the analogWrite(pin_number, duty_cycle), where in place

of the pin_number, we enter the terminal number to which the diode is connected, and in place of

the duty_cycle we enter a number in the range from 0 to 255.

Setting 0 will be equivalent to lighting the diode with the brightness of 0%,

and 255 will mean lighting with the brightness equal to 100%.

Following example demonstrates how to change the brightness of a red diode:

#define LED2R 9

#define LED2G 10

#define LED2B 11

void setup() {

 // pin configuration

 pinMode(LED2R, OUTPUT);

}

void loop() {

 // set LED brightness

TME-EDU-ARD-2

15

 analogWrite(LED2R, 0);

 delay(500); // wait for 500ms

 // set LED brightness

 analogWrite(LED2R, 50);

 delay(500); // wait for 500ms

 // set LED brightness

 analogWrite(LED2R, 150);

 delay(500); // wait for 500ms

 // set LED brightness

 analogWrite(LED2R, 255);

 delay(500); // wait for 500ms

}

Using testing terminals described as D9, D10, D11 and GND, it is possible to connect the board to

the oscilloscope, which will show changes in the signal duty cycle that the diode is being controlled

with.

If you don’t have an oscilloscope, a voltmeter can be connected to this point (between any

measuring point and GND). With the increase of the PWM signal duty cycle, the voltmeter should

indicate higher and higher voltage (from 0 to 5V).

Arduino based TME Educational Board

16

5-button keyboard (D4, D5, D6, D7, D8)
There are 5 monostable buttons on the board that are connected to digital pins D4, D5, D6, D7 and

D8. All buttons have been equipped with RC filters, thanks to which the readings are stable and

there is no need to program the inputs in order to avoid the so-called. contact vibrations.

The buttons are connected via reversing buffers, so when the button is not pressed, the low state

(logic "0") is visible at the Arduino input. After pressing the button, the input state will be high (logic

"1").

Depending on the version of the board, the resistors marked as "NA" might

not be soldered in, which doesn't influence operation of the circuit.

To use the buttons, the pin should be configured as an input using the pinMode(pin_number,

INPUT) function, in which as pin_number we enter the pin number to be used in the input mode. In

the further part of the programme, we read the input status using the digitalRead(pin_number)

function.

The programme, which will turn on the LED1 diode after pressing the button connected to the D4

pin (to the left):

#define LED1 13

#define SW_LEFT 4

// the setup function runs once when you press reset or power the board

void setup() {

 // pin configuration

 pinMode(LED1, OUTPUT);

 pinMode(SW_LEFT, INPUT);

}

// the loop function runs over and over again forever

void loop() {

 if (digitalRead(SW_LEFT) == HIGH) { // if the pushbutton is pressed

 digitalWrite(LED1, HIGH);

TME-EDU-ARD-2

17

 } else {

 digitalWrite(LED1, LOW); // if not

 }

}

Communication with a computer via UART
The USB cable connected to Arduino can power the board, it is used for programming it, but it can

also be used for communication between the set and the computer. For this purpose, it is necessary

to use the UART interface, which should be turned on one time at the beginning with the below

instruction:

Serial.begin(115200);

The value given in brackets, i.e. "115200" means the selected transfer rate, which in this case was

set to one of the most popular, standard values.

Then, using the following command, it is possible to send various values to the computer. In this

case, it is the word "TEST":

Serial.println("TEST");

In order to check the operation of this mechanism in practice, you can expand the previous

programme that used the button and add to it sending information about the button pressed to the

computer.

Additional delay added at the end of the programme means that the loop is

executed only every 200 ms, so the information will not be sent to the

computer too often.

#define LED1 13

#define SW_LEFT 4

void setup() {

 // pin configuration

 pinMode(LED1, OUTPUT);

 pinMode(SW_LEFT, INPUT);

 Serial.begin(115200);

}

void loop() {

 if (digitalRead(SW_LEFT) == HIGH) { // if the pushbutton is pressed

 digitalWrite(LED1, HIGH);

Arduino based TME Educational Board

18

 Serial.println("LEFT");

 } else { // if not

 digitalWrite(LED1, LOW);

 }

 delay(200);

}

After uploading this programme, run the Serial Port Monitor, which can be found in the Arduino IDE

menu in the Tools option. From now on, after pressing the button on the board (D4), the text "LEFT"

should appear in a new window:

If instead of "LEFT" text, random, unreadable characters are displayed,

make sure that the appropriate transfer rate is selected

at the bottom of the window (in the drop-down menu), i.e.: 115200.

Sending information to Arduino
On a similar basis, you can also send information to Arduino. A sample program of this type is

shown in the example below. The program continually checks if Arduino received any data from the

computer. If yes, it is saved in the text variable, and a welcome screen is displayed.

String text = "";

void setup() {

 Serial.begin(115200);

}

void loop() {

 if(Serial.available() > 0) { //Is there any text received?

 text = Serial.readStringUntil('\n'); //Read that text

 Serial.println("Hello " + text + "!"); //Print information

 }

}

TME-EDU-ARD-2

19

Program operation in practice:

Text LCD display 2x16 characters
One of the main elements of the

educational board is a text LCD display, on

which you can display 2 lines of text (16

characters each). The display is connected

via an additional intermediary system that

communicates with Arduino via the digital

I2C interface. Thanks to this, only 2 signal

lines are used to control this display.

To run the display, it is necessary to add

the appropriate libraries. For this purpose,

you can use the Library Manager built into

the Arduino IDE, which is located in the

menu: Sketch > Add Library > Manage

libraries...

You need Internet access to run the

Library Manager! Alternatively, libraries

can be imported from previously prepared ZIP archives. To do this, use the option: Sketch > Add

Library > Add .ZIP library...

We add libraries in the programme using the #include command:

#include <Wire.h>

#include <hd44780.h>

#include <hd44780ioClass/hd44780_I2Cexp.h>

Then, it is necessary to provide information about connection method of the LCD display to the

expander. First information given to the called function (0x20) is the address of the expander

controlling this display.

// information about the LCD connection

hd44780_I2Cexp lcd(0x20, I2Cexp_MCP23008,7,6,5,4,3,2,1,HIGH);

Arduino based TME Educational Board

20

The next step is a display configuration, in which we set the allowed number of columns (16) and

rows (2). This information is closely related to the display used and should always be set in the

same way:

void setup() {

 // lcd configuration

 lcd.begin(16, 2);

}

In order to display information on the display, use the lcd.setCursor(x, y) command, which will

position the cursor in the appropriate location. Lines and positions in lines are counted from zero

(not from 1), so for example:

o lcd.setCursor(0, 0) - start with the first character in the first line,
o lcd.setCursor(0, 1) - start with the first character in the second line,
o lcd.setCursor(5, 0) - start with the sixth character in the first line,
o lcd.setCursor(5, 1) - start with the sixth character in the second line.

After setting the cursor, you can use the lcd.print("TEXT") function, which will display the indicated

text on the LCD. In order to delete display content, you can write a string of spaces on it or use the

special function lcd.clear().

Demo of an example that displays text alternately in two lines:

#include <Wire.h>

#include <hd44780.h>

#include <hd44780ioClass/hd44780_I2Cexp.h>

// information about the LCD connection

hd44780_I2Cexp lcd(0x20, I2Cexp_MCP23008,7,6,5,4,3,2,1,HIGH);

void setup() {

 // lcd configuration

 lcd.begin(16, 2);

}

void loop() {

 // set the cursor to position

 lcd.setCursor(0, 0);

 // print text on lcd

 lcd.print("TME");

 // set the cursor to position

 lcd.setCursor(0, 1);

 // print text on lcd

 lcd.print("TESTER - 2");

 delay(1000);

 lcd.clear();

 // set the cursor to position

 lcd.setCursor(0,0);

TME-EDU-ARD-2

21

 // print text on lcd

 lcd.print("TESTER - 1");

 // set the cursor to position

 lcd.setCursor(0, 1);

 // print text on lcd

 lcd.print("TME");

 delay(1000);

 lcd.clear();

}

If the text is not visible on the display in spite of the programme being loaded, it may be necessary

to adjust the contrast, which can be done using a small, silver potentiometer located above the

top right-hand corner of the display. All you have to do is to turn the potentiometer gently with the

loaded programme and running system, e.g. using a flat-head screwdriver.

Support for analog sensors
There are several analog sensors on the board, and the way of operating all of them is very similar.

Analog sensors measure physical value (e.g. temperature), and show the result in as a certain

voltage value. For example, the warmer it is, the higher is the voltage from the sensor supply range

on the sensor output (in this case from 0 to 5V).

To use the analog input you do not have to declare it in any way. It is enough to read the voltage

value, which is represented by a number between 0 and 1023. Where 0 means ~0V and 1023

means ~5V. The information is read using the analogRead(pin_number) function.

Range 0-1023 results from the fact that Arduino has an analog-digital

converter (ADC) with a resolution of 10 bits.

Analog sensors - potentiometer (A1)
The simplest analog sensor located on the board is a

potentiometer connected to the A1 pin (A for “analog”). In

this case, the use of this element as a voltage divider is

used.

The following programme will read information from this

sensor and send it to the computer via UART. New values

will be sent every 150 ms:

void setup() {

 // UART configuration

 Serial.begin(115200);

}

Arduino based TME Educational Board

22

void loop() {

 // read sensor data

 int pot = analogRead(A1);

 // send information to PC

 Serial.println(pot);

 // wait for 150 ms

 delay(150);

}

After uploading the programme and launching the Serial Port Monitor, a sequence of numbers

should be visible, the values of which change during manual adjustment of the potentiometer.

A more convenient form of displaying values read from an analog sensor can be an LCD. In this

case, the content of the top line is printed only once, at the beginning of the programme, and only

the content displayed in the second line is replaced in the loop:

#include <Wire.h>

#include <hd44780.h>

#include <hd44780ioClass/hd44780_I2Cexp.h>

// information about the LCD connection

hd44780_I2Cexp lcd(0x20, I2Cexp_MCP23008,7,6,5,4,3,2,1,HIGH);

void setup() {

 // lcd configuration

 lcd.begin(16, 2);

 // set the cursor to position

 lcd.setCursor(0, 0);

 // print text on lcd

 lcd.print("POT:");

}

TME-EDU-ARD-2

23

void loop() {

 // read sensor data

 int pot = analogRead(A1);

 // set the cursor to position

 lcd.setCursor(0, 1);

 // print text on lcd

 lcd.print(pot);

 // wait for 150 ms

 delay(150);

 // clear second line of LCD

 lcd.setCursor(0, 1);

 lcd.print(" ");

}

After uploading this programme, any change of the potentiometer position should be immediately

visible on the display in form of a changing number between 0 and 1023.

Analog sensors - light sensor (A3)
Another analog sensor placed on the board is the KPS-3227

light sensor, which by default is connected to the A3 input. By

testing the voltage at the output of this sensor, you can measure

the amount of light falling on the board - the brighter the light is,

the higher voltage should be.

Example displaying a value on the display:

#include <Wire.h>

#include <hd44780.h>

#include <hd44780ioClass/hd44780_I2Cexp.h>

hd44780_I2Cexp lcd(0x20, I2Cexp_MCP23008,7,6,5,4,3,2,1,HIGH);

void setup() {

 lcd.begin(16, 2);

 lcd.setCursor(0, 0);

 lcd.print("LIGHT:");

}

void loop() {

 int light = analogRead(A3); // read sensor data

 // set the cursor to position

 lcd.setCursor(0, 1);

 // print text on lcd

 lcd.print(light);

 // wait for 150 ms

 delay(150);

Arduino based TME Educational Board

24

 // clear second line of LCD

 lcd.setCursor(0, 1);

 lcd.print(" ");

}

The sensor indications may be unstable with some sources of artificial light

(e.g. in case of fluorescent lamps).

For easier interpretation of the results, you can use the map function, which allows you to scale the

values. The following code will give you a value between 0 and 100, instead of a value between

0 and 1023, because you can interpret it for example as a percentage level of lighting:

lcd.print(map(light, 0, 1023, 0, 100));

A list of all Arduino functions is available at:

https://www.arduino.cc/reference/en/

Analog sensors - temperature sensor (A2)
The board has an analog temperature

sensor MCP9701 (connected to A2 by

default). This sensor can be used

identically to a light sensor. In this case,

an increase in voltage at its output will

mean a rise in temperature.

Voltage reading at the sensor output

can also be converted into temperature

in degrees Celsius. To do this, following

formula can be used: temp*0.125-22.0.

Sample thermometer programme:

#include <Wire.h>

#include <hd44780.h>

#include <hd44780ioClass/hd44780_I2Cexp.h>

hd44780_I2Cexp lcd(0x20, I2Cexp_MCP23008,7,6,5,4,3,2,1,HIGH);

void setup() {

 lcd.begin(16, 2);

 lcd.setCursor(0, 0);

 lcd.print("TEMP [C]:");

}

void loop() {

TME-EDU-ARD-2

25

 // read sensor data

 int temp = analogRead(A2);

 lcd.setCursor(0, 1);

 temp = (int)(temp*0.125 - 22.0);

 lcd.print(temp);

 delay(200);

 lcd.setCursor(0, 1);

 lcd.print(" ");

}

A temperature sensor might work incorrectly if exposed to magnetic field.

Analog sensors - microphone (A0)
There is a microphone on the board that has been connected to the Arduino in a way that allows it

to be used as a noise level sensor. This microphone can be used, for example, to switch diodes

on by clapping or signalling too high sound levels in a room.

The following code is the simplest form of using this sensor. Arduino regularly checks the voltage

level at the input to which the microphone system is connected. This information is shown on the

display. If the measured value exceeds 250, the condition will be met and the LED1 will be switched

on for a second. The value triggering the diode switching on was selected experimentally in such

a way that the system responded to the clap.

#define LED1 13

#include <Wire.h>

#include <hd44780.h>

#include <hd44780ioClass/hd44780_I2Cexp.h>

hd44780_I2Cexp lcd(0x20, I2Cexp_MCP23008,7,6,5,4,3,2,1,HIGH);

void setup() {

 pinMode(LED1, OUTPUT);

 lcd.begin(16, 2);

 lcd.setCursor(0, 0);

Arduino based TME Educational Board

26

 lcd.print("MIC:");

}

void loop() {

 // read sensor data

 int mic = analogRead(A0);

 lcd.setCursor(0, 1);

 lcd.print(mic);

 if (mic > 250) { // if a clap was detected

 // turn the LED on

 digitalWrite(LED1, HIGH);

 delay(1000);

 } else { // if not

 // turn the LED off

 digitalWrite(LED1, LOW);

 }

 delay(150);

 lcd.setCursor(0, 1);

 lcd.print(" ");

}

Expander and 7-segment display
There is a 7-segment display with a common anode in the top right-hand corner of the board, which

was connected to Arduino via the I2C expander (0x24 address). The use of different addresses

allows simultaneous use of many components communicating with the same data lines. This allows

simultaneous use of text LCD for example.

TME-EDU-ARD-2

27

There is a jumper described as "ON / OFF" below the display. Using this jumper it is possible to

disconnect the common anode from the mass of the system, which will completely turn the display

off. This jumper is useful in situations where we want to use the expander pins in a different way.

You can then remove the jumper, turn off the display and use the expander pins led out to the

double connector next to the display.

You should start using the expander from adding a library and declaring a new object (here named

as seg7), which will allow you to control individual pins:

#include "Adafruit_MCP23008.h"

Adafruit_MCP23008 seg7;

We initialize the expander and set all its pins in as inputs. The names of functions and how they are

used are similar to those used to control the pins built into Arduino:

 seg7.begin(0x4);

 seg7.pinMode(0, OUTPUT);

 seg7.pinMode(1, OUTPUT);

 seg7.pinMode(2, OUTPUT);

 seg7.pinMode(3, OUTPUT);

 seg7.pinMode(4, OUTPUT);

 seg7.pinMode(5, OUTPUT);

 seg7.pinMode(6, OUTPUT);

 seg7.pinMode(7, OUTPUT);

Address of the expander responsible for the 7-segment display is 0x24, however the library used

here only requires providing the offset value above address 0x20 as an address. Therefore, we only

pass the address in form of 0x4 to the function. (However, this method is specific only to this library,

more information on this subject can be found in the Adafruit_MCP23008 library documentation.)

From now on, after the configuration of the display, it will be possible to control all the LEDs that

are part of it. Turning on the diode is as follows: seg7.digitalWrite(pin_number, HIGH). An example

of a programme flashing with two elements of the display:

#include "Adafruit_MCP23008.h"

Adafruit_MCP23008 seg7;

void setup() {

 seg7.begin(0x4); // expander pin configuration

 seg7.pinMode(0, OUTPUT);

 seg7.pinMode(1, OUTPUT);

 seg7.pinMode(2, OUTPUT);

 seg7.pinMode(3, OUTPUT);

 seg7.pinMode(4, OUTPUT);

 seg7.pinMode(5, OUTPUT);

 seg7.pinMode(6, OUTPUT);

 seg7.pinMode(7, OUTPUT);

}

Arduino based TME Educational Board

28

void loop() {

 seg7.digitalWrite(5, HIGH);

 seg7.digitalWrite(2, LOW);

 delay(250);

 seg7.digitalWrite(5, LOW);

 seg7.digitalWrite(2, HIGH);

 delay(250);

}

Expander and 7-segment display (digits)
Usually, this type of display is used to display numbers from 0 to 9. To make setting such values

easier, it is worth adding an array with 10 elements to the programme. Each element of the array is

a binary number, which represents information on the switching on (1) or off (0) of each diode.

uint8_t digit[10] = {

 B00111111, // "0"

 B00000110, // "1"

 B01011011, // "2"

 B01001111, // "3"

 B01100110, // "4"

 B01101101, // "5"

 B01111101, // "6"

 B00000111, // "7"

 B01111111, // "8"

 B01101111, // "9"

};

Thanks to this, using the new seg7.writeGPIO() function it will be possible to display any digit using

a single line of code. The following demonstration programme displays all values (0-9) in a loop:

#include "Adafruit_MCP23008.h"

Adafruit_MCP23008 seg7;

uint8_t digit[10] = {

 B00111111, // "0"

 B00000110, // "1"

 B01011011, // "2"

 B01001111, // "3"

 B01100110, // "4"

 B01101101, // "5"

 B01111101, // "6"

 B00000111, // "7"

 B01111111, // "8"

 B01101111, // "9"

};

void setup() {

 // expander pin configuration

 seg7.begin(0x4);

 seg7.pinMode(0, OUTPUT);

TME-EDU-ARD-2

29

 seg7.pinMode(1, OUTPUT);

 seg7.pinMode(2, OUTPUT);

 seg7.pinMode(3, OUTPUT);

 seg7.pinMode(4, OUTPUT);

 seg7.pinMode(5, OUTPUT);

 seg7.pinMode(6, OUTPUT);

 seg7.pinMode(7, OUTPUT);

}

void loop() {

 for (int i=0; i<10; i++) {

 seg7.writeGPIO(digit[i]);

 delay(250);

 }

}

For loop
In the example above, we used the for loop. By using the loop, we can execute the same instructions

multiple times (without the need for re-typing them), and therefore we can shorten the notation. In

this example, the loop will execute 10 times (from 0 to 9). Each time, a value from the digit array

will be displayed on the screen, indicating the current cycle of the loop. This is possible because

the value of variable "i" will be incremented (increased) after each execution of the instructions in

the for loop. After the defined number of executions, the program will proceed to further instructions

(in this case, it will go back to the beginning and restart execution of instructions in the for loop).

While loop
Another equally common loop in Arduino is the while loop, which executes itself until the condition

in the bracket is met. The for loop described above can be replaced with the new while loop in the

following manner:

int i = 0;

while(i < 10){

 seg7.writeGPIO(digit[i]);

 delay(250);

 i++;

}

At the beginning, a counter variable is created (here, it is the "i" variable). Right after while in the

bracket, a condition is added, which makes the loop execute itself until the value of the "i" variable

is less than 10. The loop contains instructions to be performed several times. At the end of the loop,

an increment operator is added (i++), i.e. the increase of the variable by 1. Thanks to that, after the

10th cycle the condition is not met, and the program will exit the loop.

Loops of this type are also used for creating infinite loops. In such cases, there’s no need for adding

a condition – you can simply use "1", which means that the condition will always be true:

while(1){

 //infinite loop

}

Arduino based TME Educational Board

30

OLED graphic display
Another element connected

to the I2C interface is the

OLED graphic display

(address 0x3C), which is

next to the LEDs. The

display used on the board

has the popular SSD1306

driver.

In order to use the display,

you need to add the required

library to the project:

#include <Adafruit_SSD1306.h>

And create a display object:

Adafruit_SSD1306 display(NULL);

Then, inside the setup function configuration of OLED is necessary, which means its initialization

(with entering the address 0x3C), waiting for a short time for the controller initialization, clearing the

display content and setting the colour to white (the only possible one):

 display.begin(SSD1306_SWITCHCAPVCC, 0x3C, false);

 delay(500);

 display.clearDisplay();

 display.setTextColor(WHITE);

Displaying the text on the screen consists in selecting the cursor position (set in pixels), entering

the text, and then "sending" all information to the screen.

The following programme first displays two test lines (one under the other with 50 pixels shift to the

right). Then, slides the text "TEST LINE 12345" diagonally through the screen:

#include <Adafruit_SSD1306.h>

Adafruit_SSD1306 display(NULL);

void setup() {

 display.begin(SSD1306_SWITCHCAPVCC, 0x3C, false);

 delay(500);

 display.clearDisplay();

TME-EDU-ARD-2

31

 display.setTextColor(WHITE);

 display.setCursor(0,0);

 display.println("TEST LINE 1");

 display.setCursor(50,10);

 display.println("TEST LINE 2");

 display.display();

 delay(2000);

}

void loop() {

 for (int i = 0; i < 8; i++) {

 display.clearDisplay();

 display.setCursor(5*i,8*i);

 display.println("TEST LINE 12345");

 display.display();

 delay(250);

 }

}

IR receiver (D3)
The board is equipped with an integrated infrared

receiver TSOP2236, which can be used to receive

information sent by IR remotes working in the RC5

standard. This method of communication was

developed by Philips over 30 years ago for remote

control of consumer electronics and is still very popular.

The remote control working in the RC5 standard sends an infrared beam with a frequency of 36

kHz. Each time, 14 bits of data are sent, which create a data frame. If the button on the remote

control is pressed, data frames are transmitted all the time (every ~114 ms).

The use of a sensor connected to the D3 pin should be started from adding a library, creating an

object and declaring a new structure to store the received information:

#include <IRremote.h>

IRrecv irrecv(3);

decode_results results;

Sample demo programme that decodes signals from the remote and sends them to a computer via

UART is shown below:

#include <IRremote.h>

IRrecv irrecv(3);

decode_results results;

Arduino based TME Educational Board

32

void setup() {

 Serial.begin(115200);

 irrecv.enableIRIn(); // start IR receiver

}

void loop() {

 if (irrecv.decode(&results)) { // if data detected

 // send data via UART to PC in HEX format

 Serial.println(results.value, HEX);

 irrecv.resume(); // resume receiver

 }

 delay(100);

}

As a result of its work decoded codes should appear in the Serial Port Monitor, which are sent by

the IR remote. Remote codes may vary, depending on the particular model. Some of the remotes

also send other codes depending on whether the button is pressed for the first or for the next time.

Support of digitally controlled RGB LEDs (D12)
There are 5 digitally controlled RGB LEDs on the board. All these diodes are connected in series

to one Arduino output (D12). WS2812B diodes have a built-in controller, so that different colour can

be assigned to each diode.The LEDs are numbered from 0 to 4. The LED number 0 is next to the

OLED display, the remaining 4 LEDs have been placed on the other side of the board (in the

corners), thanks to which they can illuminate the board from the bottom. Diodes should be turned

on beginning from adding a library and configuring an object that contains information about them.

TME-EDU-ARD-2

33

The following entry is a declaration of 5 LEDs connected to pin 12:

#include <Adafruit_NeoPixel.h>

Adafruit_NeoPixel pixels = Adafruit_NeoPixel(5, 12, NEO_GRB + NEO_KHZ800);

To enable each colour of LED number 0, use the setPixelColor function:

 pixels.begin();

 pixels.setPixelColor(0, pixels.Color(10,20,30));

 pixels.show();

This code means that the first diode in the series (No. 0) will be set to red with intensity 10/255,

green with intensity 20/255 and blue with intensity 30/255. After assigning colours, simply call the

show function, which will send information to the LEDs.

The following test programme runs all the colours of the LED next to the OLED display and then

alternately blinks with 4 LEDs on the bottom of the board (in blue and red):

#include <Adafruit_NeoPixel.h>

Adafruit_NeoPixel pixels = Adafruit_NeoPixel(5, 12, NEO_GRB + NEO_KHZ800);

void setup() {

 pixels.begin();

 pixels.setPixelColor(0, pixels.Color(10,20,30));

 pixels.show();

}

void loop() {

 pixels.setPixelColor(1, pixels.Color(0,0,255));

 pixels.setPixelColor(2, pixels.Color(255,0,0));

 pixels.setPixelColor(3, pixels.Color(0,0,255));

 pixels.setPixelColor(4, pixels.Color(255,0,0));

 pixels.show();

 delay(250);

 pixels.setPixelColor(1, pixels.Color(255,0,0));

 pixels.setPixelColor(2, pixels.Color(0,0,255));

 pixels.setPixelColor(3, pixels.Color(255,0,0));

 pixels.setPixelColor(4, pixels.Color(0,0,255));

 pixels.show();

 delay(250);

}

In case of a problem with turning on the diodes, make sure that after setting the colours, function

show was called, which is responsible for sending information to the controllers.

Arduino based TME Educational Board

34

Bluetooth module

The board has a space for attaching an optional Bluetooth module, e.g. HC-05. The angled 6-pin

connector for its connection is located to the right of the jumper strip. The following signals have

been led out there:

o power supply for the BT module,

o 2 pins controlling the module,

o 2 pins for data transmission (UART).

The connection was made using a logical level converter:

Bluetooth module can be used, for example, to communicate the set with mobile phones running

Android operating system. Communication is performed via the UART interface - the same one

which is used for communication with a PC. Therefore, it is possible to use only one of these two

ways of communication at the same time.

To verify the operation of the module, the following test code can be used. It works by sending the

text "TME BT" (every 250 ms). At the same time, the system receives all data sent to it from the

phone. If the "TEST" string is received, the system will respond by sending "TME BT TEST OK"

and will stop sending new information for 1 second.

void setup() {

 Serial.begin(115200);

}

String data = "";

void loop() {

 if(Serial.available() > 0) { // if data received

 // read string until new line char

 data = Serial.readStringUntil('\n');

TME-EDU-ARD-2

35

 // if there is "TEST" string received

 if (data == "TEST") {

 // send back "TME BT TEST OK"

 Serial.println("TME BT TEST OK");

 delay(1000);

 }

 }

 Serial.println("TME BT");

 delay(250);

}

After uploading the programme, slide switch should be set to the BT ON position. Set with the BT

module should be detected by the phone as a new Bluetooth device that can be paired using the

default pin code: "1234". After pairing, application in the mobile phone should display messages

sent by the board.

Arduino shields connectors

There are sockets in the top right-hand corner of the board that allow you to connect expansion

boards in Arduino Shield standard. However, you need to remember that before connecting any

additional module, you have to disconnect all pins that are used by the overlay using the

jumpers!

In an extreme situation, the conflict of used signals

may damage the Arduino, an educational board or an additional module.

Configuration jumpers

All peripherals on the board are connected to Arduino by default. However, it is possible to change

the configuration very easily. By removing jumpers, you can disconnect the peripherals from the

controller. If it is necessary, you can change the assignment of peripherals to specific pins using

an additional connection cable (not included).

Changing the configuration of connections using jumpers can be particularly convenient when it is

necessary to connect certain peripheral of the board to another pin, e.g.: connecting the LED1 diode

to the pin on which hardware PWM signal generation is possible.

Arduino based TME Educational Board

36

The following example shows how you can disconnect the buzzer and LED1 and change the

configuration in such a way that the buzzer is controlled by pin D13 (instead of D2).

List of Arduino functions

Below you can find the abridged list of all the features with their short description included. Its full
version with detailed descriptions can be found on https://www.arduino.cc/reference/en/.

digitalRead(pin) – digital input status check.
 pin – lead on which the condition is to be checked
 Returned value: HIGH (for high state) or LOW (for low state)

digitalWrite(pin, state) – setting digital output state.
 pin – lead on which state is to be set
 state – state to be set (LOW or HIGH)
 Returned value: none.

pinMode(pin, mode) – configuration of the digital pin operating mode.
 pin – lead to be configured
 mode – lead working mode:
 INPUT – digital input
 INPUT_PULLUP – input with pull-up resistor activated
 OUTPUT – digital output
 Returned value: none.

https://www.arduino.cc/reference/en/

TME-EDU-ARD-2

37

analogRead(pin) – voltage measurement using an ADC converter.
 pin – analog lead (A0-A5) on which the measurement is to be made
 Returned value: a number between 0 and 1023 (the higher the input voltage, the higher

the value returned by the function).

analogWrite(pin, value) – setting PWM signal duty cycle on the specified lead.
pin – lead on which the PWM signal should be generated
value – duty cycle value from 0 to 255, where 0 is 0% of the PWM signal duty cycle, and
255 is 100% of the PWM signal duty cycle.
Returned value: none.

delay(ms) – function that pauses the operation of the program for a specified number of
milliseconds (1 second is 1000 milliseconds). Function operation completely holds the
program!
ms – duration of the delay / pause of the program in milliseconds, maximum value is 4
294 967 295 (size of the unsigned long variable).
Returned value: none.

delayMicroseconds(us) – function that pauses the operation of the program for a specified number
of milliseconds (1 second is 1000 milliseconds). Function operation completely holds the
program!
us – duration of the delay / pause of the program in microseconds, maximum value is
16 383.
Returned value: none.

abs(x) – function that returns the absolute value, for the correct operation of the function you should

avoid using other functions inside of the arguments.

 x – number of which the absolute value is to be calculated.

 Returned value: absolute value from the number x.

constrain(x, a, b) – function that checks if the number is in the given range.
 x – tested number (of any type)
 a – lower range value
 b – upper range value
 Returned value:
 x – if the number is greater than a and smaller than b.
 a - if the number x is smaller than a
 b – if the number x is greater than b

map(value, fromLow, fromHigh, toLow, toHigh) – function that scales a number from one range
to the other. It is useful, for example, for rescaling the value measured by the ADC
converter (0 ... 1023) to a percentage value (0 ... 100%).

 value – value to be scaled
 fromLow – lower range of the current range
 fromHigh – upper range of the current range
 toLow – lower range of the future range
 toHigh – upper range of the future range
 Returned value: scaled number.

Arduino based TME Educational Board

38

max(x, y) – function that compares two numbers.
 x – first number
 y – second number
 Returned value: larger of the numbers

min(x, y) – function that compares two numbers.
 x – first number
 y – second number
 Returned value: smaller of the numbers

pow(base, exponent) – function calculating power.
 base – number to be raised to power
 exponent – value of the power
 Returned value: base number raised to exponent power.

sqrt(x) – square root function.
 x – number
 Returned value: square root of the number x.

sq(x) – square function.
 x – number
 Returned value: x raised to the power of 2.

cos(rad) – function calculating cosine of an angle.
 rad – angle in Radians
 Returned value: cosine of the given angle.

sin(rad) – function calculating sine of an angle.
 rad – angle in Radians
 Returned value: sine of the given angle.

tan(rad) – function calculating tangent of an angle.
 rad – angle in Radians
 Returned value: tangent of the given angle.

millis() – function that returns the number of milliseconds since Arduino was started. The value is
reset after about 50 days.

 Returned value: time since start in milliseconds (variable of unsigned long type)

pulseIn(pin, value, timeout) – function calculating duration of the pulse on a given input. For
example, measurement starts when state changes from low to high and stops when the
low state reappears. The function works properly for pulses from 10 microseconds to 3
minutes.
pin – output on which the pulse is to be measured
value – pulse type to be measured (LOW or HIGH)
timeout – optional number of microseconds after which the system will stop measuring
if the state on the pin does not change before
Returned value: duration – duration of the pulse in microseconds or 0 if no measurement

isAlpha(char) – function checking if the given character is a letter.
 char – character to be checked
 Returned value: true if the character is a letter

TME-EDU-ARD-2

39

isAlphaNumeric(char) – function checking if the given character is a letter or a digit.
 char – character to be checked
 Returned value: true if the character is a letter or a digit

isDigit(char) – function checking if the given character is a digit.
 char – character to be checked
 Returned value: true if the character is a digit

random(min, max) – function that returns a pseudo-random value. The use of the function should
be preceded by a single call of the randomSeed() function.

 min – start of the range
 max – end of the range
 Returned value: pseudo-random value from min to (max-1)

randomSeed(seed) – function that initializes the pseudorandom number generator. Without the
correct use of this function, values returned by the random function will be the same
each time Arduino is started.

 seed – numerical value that initializes a pseudo-random number generator.
 Returned value: none

Example: randomSeed(analogRead (0)) ADC value read from the A0 pin which can be
used by sensors connected to the system or may be unused is given as an
argument to the function. Random reading of ADC makes that after each start
of Arduino, the pseudo-random number generator can return different values
in subsequent draws.

byte(x) – function converting the variable x.
 x – variable to be converted
 Returned value: variable of type byte.

char(x) – function converting the variable x.
 x – variable to be converted
 Returned value: char variable.

int(x) – function converting the variable x.
 x – variable to be converted
 Returned value: variable of type int.

long(x) – function converting the variable x.
 x – variable to be converted
 Returned value: variable of type long.

for (initialization; condition; update) { } – the for loop is used for multiple execution of instructions
provided in the body of the function; initialization is used only once, and it is usually used to create
a counter variable in the loop (e.g. "int i = 0"); next, a condition is added to define how long the loop
shall be executed (e.g. "i < 10"); the final element is the information on what happens with the
counter variable after each cycle of the loop (e.g. "i++").

while(condition) { } – instructions in the while loop will be executed indefinitely as long as the
condition in parentheses is true; the condition may be a numeric value or e.g. the status of a
connected button or sensor.

Arduino based TME Educational Board

40

Operators:
• % modulo division
• * multiplication
• + addition
• - subtraction
• / division
• = assignment
• != not equals
• < lower
• <= lower or equal
• > greater
• >= greater or equal
• == equal
• ! negation
• && logical AND
• || logical OR

List of libraries with licenses

Extensible hd44780 LCD library – library for hd44780 based LCD display
Project website: www.github.com/duinoWitchery/hd44780

Author: Bill Perry

Licence: GPL

Adafriut_SSD1306 – library for our Monochrome OLEDs based on SSD1306 drivers
Project website: www.github.com/adafruit/Adafruit_SSD1306

Author: firma Adafruit

Licence: BSD

Adafruit_NeoPixel – library for controlling single-wire-based LED pixels
Project website: www.github.com/adafruit/Adafruit_NeoPixel

Author: firma Adafruit

Licence: GPL

Arduino RC5 remote control decoder library – library for decoding infrared remote control

commands encoded with the Philips RC5 protocol
Project website: www.github.com/guyc/RC5

Author: Guy Carpenter

Licence: BSD

Adafruit-MCP23008-library – library for the MCP23008 I2C I/O expander
Project website: www.github.com/adafruit/Adafruit-MCP23008-library

Author: firma Adafruit

Licence: BSD

