

The MiCS-5914 is a compact MOS sensor.

The MiCS-5914 is a robust MEMS sensor for ammonia detection; suitable also for gas leak detection and indoor and outdoor air quality monitoring.

Features

- Smallest footprint for compact designs (5 x 7 x 1.55 mm)
- Robust MEMS sensor for harsh environments
- High-volume manufacturing for low-cost applications
- Short lead-times

Detectable gases

 Ammonia 	NH ₃	1 – 500ppm
• Ethanol	C ₂ H ₅ OH	10 – 500ppm
 Hydrogen 	H ₂	1 – 1000ppm
• Propane	C ₃ H ₈	>1000ppm
• Iso-butane	C_4H_{10}	>1000ppm

For more information please contact:

info.em@sgxsensortech.com

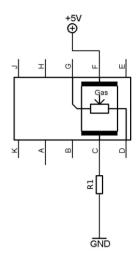
SGX Sensortech, Courtils 1 CH-2035 Corcelles-Cormondrèche Switzerland

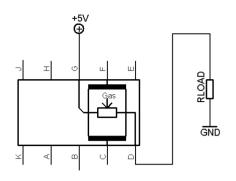
www.sgxsensortech.com

Continuous power ON, 25°C, 50% RH

Performance sensor

Characteristic RED sensor	Symbol	Тур	Min	Max	Unit
Sensing resistance in air (see note 1)	R_0	-	10	1500	kΩ
Typical NH3 detection range	FS		1	300	ppm
Sensitivity factor (see note 2)	S _R	-	1.5	15	-


Notes:

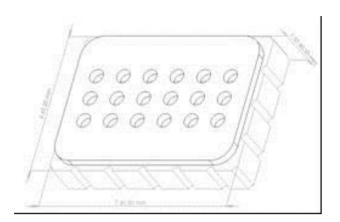

- 1. Sensing resistance in air R_0 is measured under controlled ambient conditions, i.e. synthetic air at 23 $\pm 5^{\circ}$ C and 50 \pm 10% RH. Sampling test.
- 2. Sensitivity factor is defined as R_s in air divided by R_s at 1 ppm of NH_3 . Test conditions are 23 ± 5°C and 50 ± 10% RH. Indicative values only. Sampling test.

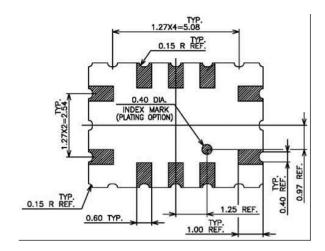
IMPORTANT PRECAUTIONS:

Read the following instructions carefully before using the MiCS-5914 described here to avoid erroneous readings and to prevent the device from permanent damage.

- The sensor must be reflow soldered in a neutral atmosphere, without soldering flux vapours.
- The sensor must not be exposed to high concentrations of organic solvents, silicone vapours or cigarette-smoke in order to avoid poisoning the sensitive layer.
- Heater voltage above the specified maximum rating will destroy the sensor due to overheating.
- This sensor is to be placed in a filtered package that protects it against water and dust projections.
- SGX sensortech strongly recommends using ESD protection equipment to handle the sensor.

MiCS-5914 with recommended supply circuit (top view)

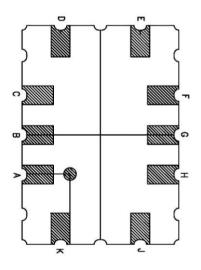

R1 is typically a E96 resistor at 93.1 Ω . This resistor is necessary to obtain the right temperature on the heater while using a single 5V power supply. The resulting voltage is typically VH = 2.2V.


MiCS-5914 with measurement circuit (top view)

The voltage measured on the load resistor is directly linked to the resistance of the sensor respectively. RLOAD must be 820 Ω at the lowest in order not to damage the sensitive layer.

Parameter	Symbol	Тур	Min	Max	Unit
Heating power	P _H	66	60	73	mW
Heating voltage	V _H	2.2	-	-	V
Heating current	I _H	30	-	-	mA
Heating resistance at nominal power	R _H	72	64	80	Ω

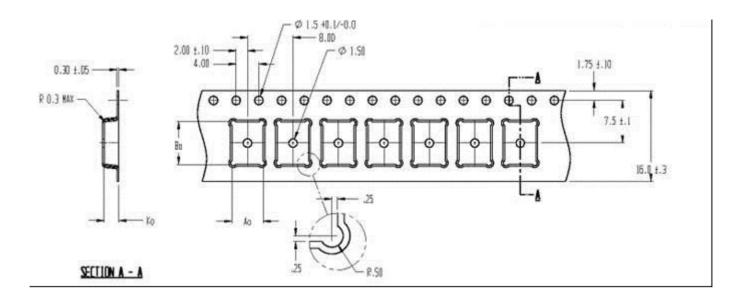
Rating	Symbol	Value / Range	Unit
Maximum heater power dissipation	P _H	88	mW
Maximum sensitive layer power dissipation	Ps	8	mW
Voltage supplyHeating current	Vsupply	4.9 – 5.1	V
Relative humidity range	RH	5 – 95	%RH
Ambient operating temperature	Tamb	-30 – 85	°C
Storage temperature range	Tsto	-40 – 120	°C
Storage humidity range	RHsto	5 - 95	%RH



Package outline dimensions

The package is compatible with SMD assembly process.

Pin	Connection
A	
В	
С	Rh1
D	Rs1
Е	
F	Rh2
G	Rs2
Н	
J	
K	

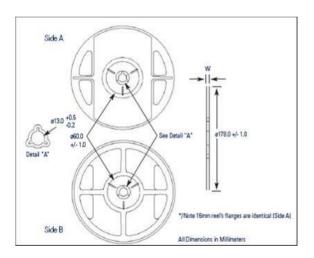


MiCS-5914 configuration (bottom view)

Sensor configuration

The silicon gas sensor structure consists of an accurately micro machined diaphragm with an embedded heating resistor and the sensing layer on top.

The internal connections are shown above.



Packaging

The sensors are packaged in a tape and reel for expedition.

The sensors are placed in a carrier type. The dimensions of the cavity are $5.5 \times 7.5 \times 2.55$ mm (the tolerance is ± -0.2 mm).

The outside dimension of the reel is either 178 +- mm (for a maximum of 700 sensors) or 330 + 0.25 / -4 mm (for a maximum of 2000 sensors).

For more information please contact:

info.em@sgxsensortech.com

SGX Sensortech, Courtils 1 CH-2035 Corcelles-Cormondrèche Switzerland

www.sgxsensortech.com

Whilst SGX sensortech has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. SGX sensortech accepts no liability beyond the set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.