
Amazon FreeRTOS
User Guide

Amazon FreeRTOS User Guide

Amazon FreeRTOS: User Guide
Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Amazon FreeRTOS User Guide

Table of Contents
What Is Amazon FreeRTOS? 1

The FreeRTOS Kernel ... 1
Amazon FreeRTOS Libraries ... 1
Amazon FreeRTOS Configuration Wizard 1
Over-the-Air Updates (Beta) ... 2
Amazon FreeRTOS Qualification Program 2
Development Workflow 2

Getting Started with Amazon FreeRTOS 4
Prerequisites ... 4

AWS Account and Permissions 4
Amazon FreeRTOS Supported Hardware Platforms 5
Registering Your MCU Board with AWS IoT 5

Getting Started with the Texas Instruments CC3220SF-LAUNCHXL 7
Setting Up Your Environment 7
Download and Build Amazon FreeRTOS 8
Run the FreeRTOS Samples 11
Troubleshooting 11

Getting Started with the STMicroelectronics STM32L4 Discovery Kit IoT Node 12
Setting Up Your Environment 12
Download and Build Amazon FreeRTOS 12
Run the FreeRTOS Samples 15

Getting Started with the NXP LPC54018 IoT Module 15
Setting Up Your Environment 16
Connecting a JTAG Debugger 16
Download and Build Amazon FreeRTOS 16

Getting Started with the Microchip Curiosity PIC32MZEF 19
Setting Up the Microchip Curiosity PIC32MZEF Hardware 20
Setting Up Your Environment 21
Download and Build Amazon FreeRTOS 21

Getting Started with the FreeRTOS Windows Simulator ... 25
Setting Up Your Environment 25
Download and Build Amazon FreeRTOS 25
Run the FreeRTOS Samples 28

Amazon FreeRTOS Demo Projects ... 29
Navigating the Demo Applications 29

Directory and File Organization 29
Configuration Files ... 30

Device Shadow Demo Application 30
Greengrass Discovery Demo Application 32
OTA Demo Application 32

OTA Update Prerequisites ... 33
Using the OTA Update Demo Application on the TI CC3200SF-LAUNCHXL 36
Using the OTA Update Demo Application on the Microchip Curiosity PIC32MZEF 43

Amazon FreeRTOS Developer Guide 51
Amazon FreeRTOS Architecture 51
FreeRTOS Kernel Fundamentals ... 52

FreeRTOS Kernel Scheduler ... 52
Memory Management 52
Inter-task Coordination 53
Software Timers 56
Low Power Support ... 56

FreeRTOS Libraries ... 57
Cloud Connectivity ... 57
Greengrass Connectivity ... 59

iii

Amazon FreeRTOS User Guide

Amazon FreeRTOS Security ... 61
FreeRTOS Wi-Fi Interface 65
OTA Agent Library 66

Amazon FreeRTOS Over-the-Air Updates 67
OTA Workflow 69
OTA Security ... 69
Monitoring Updates 70

Amazon FreeRTOS Configuration Wizard User Guide 70
Managing Amazon FreeRTOS Configurations 70

Downloading Amazon FreeRTOS from GitHub 71
Amazon FreeRTOS Qualification Program 71

What's in it for OEMs? 72
Qualification Program for MCU Vendors 72
Contact Amazon 72
Sign Up for the AWS Partner Network 72
Jointly Agree on Terms and Conditions 72
Pass Qualification Test Suite 72
Amazon FreeRTOS Qualified 73

Supported Platforms 73
Texas Instruments CC3220SF-LAUNCHXL 73
STMicroelectronics STM32L4 Discovery Kit – IoT Node 73
NXP LPC54108 IoT Module 73
Microchip Curiosity PIC32MZEF 73

Amazon FreeRTOS Porting Guide 74
Bootloader 74
Logging 74

Logging Configuration 74
Connectivity ... 75

Wi-Fi Management 75
Sockets ... 75

Security ... 76
TLS 76
PKCS#11 77

Using Custom Libraries with Amazon FreeRTOS 78
OTA Portable Abstraction Layer ... 78

iv

Amazon FreeRTOS User Guide
The FreeRTOS Kernel

What Is Amazon FreeRTOS?
Amazon FreeRTOS consists of the following components:

• A microcontroller operating system based on the FreeRTOS kernel

• Amazon FreeRTOS libraries for connectivity, security, and over-the-air (OTA) updates.

• A configuration wizard that allows you to download a zip file that contains everything you need to get
started with Amazon FreeRTOS.

• Over-the-air (OTA) Updates.

• The Amazon FreeRTOS Qualification Program.

The FreeRTOS Kernel
The FreeRTOS kernel is a real-time operating system kernel that supports numerous architectures and is
ideal for building embedded microcontroller applications. The kernel provides:

• A multitasking scheduler.

• Multiple memory allocation options (including the ability to create statically allocated systems).

• Inter-task coordination primitives, including task notifications, message queues, multiple types of
semaphores, and stream and message buffers.

Amazon FreeRTOS Libraries
Amazon FreeRTOS includes libraries that enable you to:

• Securely connect devices to the AWS IoT cloud using MQTT and device shadows.

• Discover and connect to AWS Greengrass cores.

• Manage Wi-Fi connections.

Amazon FreeRTOS Configuration Wizard
The Amazon FreeRTOS configuration wizard enables you to configure and download a package that
contains everything you need to write an application for your microcontroller-based devices:

• The FreeRTOS kernel

• Amazon FreeRTOS libraries

• Platform support libraries

• Hardware drivers

You can download a package with a predefined configuration or create your own configuration by
selecting your hardware platform and the libraries required for your application. These configurations
are saved in AWS and are available for download at any time.

1

https://console.aws.amazon.com/freertos

Amazon FreeRTOS User Guide
Over-the-Air Updates (Beta)

The Amazon FreeRTOS configuration wizard is part of the AWS IoT console. You can find it by choosing
the link above or by browsing to the AWS IoT console.

To open the Amazon FreeRTOS configuration wizard

1. Browse to the AWS IoT console.

2. From the navigation pane choose Software.

3. Under Amazon FreeRTOS Device Software choose Configure Download.

Over-the-Air Updates (Beta)
Internet-connected devices can be in use for a long time, and must be updated periodically to fix bugs
and improve functionality. Often these devices must be updated in the field and need to be updated
remotely or "over-the-air". The Amazon FreeRTOS Over-the-Air (OTA) Update service enables you to:

• Digitially sign firmware prior to deployment.

• Securely deploy new firmware images to a single device, a group of devices, or your entire fleet.

• Deploy firmware to devices as they are added to groups, reset, or reprovisioned.

• Once deployed to devices, verify the authenticity and integrity of the new firmware.

• Monitor the progress of a deployment.

• Debug a failed deployment.

For more information about OTA updates, see:

• Amazon FreeRTOS Over-the-Air Updates (p. 67)

• OTA Demo Application (p. 32)

Amazon FreeRTOS Qualification Program
The Amazon FreeRTOS Qualification Program (Amazon FQP) is for microcontroller vendors who want
to qualify their microcontroller-based hardware on Amazon FreeRTOS. The goal of Amazon FQP is to
ensure that developers can use Amazon FreeRTOS on their choice of microcontroller-based hardware.
In order to deliver a consistent experience for developers, the Amazon FQP outlines a set of security,
functionality, and performance requirements that all microcontrollers (and the associated hardware
abstraction layers and drivers) must meet.

Development Workflow
You start development by configuring and downloading a package from the Amazon FreeRTOS
configuration wizard in the AWS IoT console. You unzip the package and import it into your IDE. You
can then develop your embedded application on your selected hardware platform and manufacture and
deploy these devices using the development process appropriate for your device. Deployed devices can
connect to the AWS IoT service or AWS Greengrass as part of a complete IoT solution. The following
diagram shows the development workflow and the subsequent connectivity from Amazon FreeRTOS-
based devices.

2

Amazon FreeRTOS User Guide
Development Workflow

You can also download the Amazon FreeRTOS source code from GitHub.

3

https://github.com/aws/amazon-freertos

Amazon FreeRTOS User Guide
Prerequisites

Getting Started with Amazon
FreeRTOS

This section shows you how to download and configure Amazon FreeRTOS and run a demo application
on one of the qualified microcontroller boards. In this tutorial, we assume you are familiar with AWS IoT
and the AWS IoT console. If not, we recommend that you start with the AWS IoT Getting Started tutorial.

Prerequisites
Before you begin, you need an AWS account, an IAM user with permission to access AWS IoT and Amazon
FreeRTOS, and one of the supported hardware platforms.

AWS Account and Permissions
To create an AWS account, see Create and Activate an AWS Account.

To add an IAM user to your AWS account, see IAM User Guide. IAM users must be granted access to AWS
IoT and Amazon FreeRTOS. To grant your IAM user account access to AWS IoT and Amazon FreeRTOS,
attach the following IAM policies to your IAM user account:

• AmazonFreeRTOSFullAccess

• AWSIoTFullAccess

To attach the AmazonFreeRTOSFullAccess policy to your IAM user

1. Browse to the IAM console, and from the left navigation pane, choose Users.

2. Type your user name in the search text box, and then choose your user name from the list.

3. Choose Add permissions.

4. Choose Attach existing policies directly.

5. In the search box, type AmazonFreeRTOSFullAccess, select it from the list, and then choose Next:
Review.

6. Choose Add permissions.

To attach the AWSIoTFullAccess policy to your IAM user

1. Browse to the IAM console, and from the left navigation pane, choose Users.

2. Type your user name in the search text box, and then choose your user name from the list.

3. Choose Add permissions.

4. Choose Attach existing policies directly.

5. In the search box, type AWSIoTFullAccess, select it from the list, and then choose Next: Review.

6. Choose Add permissions.

4

http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
https://aws.amazon.com/premiumsupport/knowledge-center/
http://docs.aws.amazon.com/IAM/latest/UserGuide/
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home

Amazon FreeRTOS User Guide
Amazon FreeRTOS Supported Hardware Platforms

For more information about IAM and user accounts, see IAM User Guide.

For more information about policies, see IAM Permissions and Policies.

Amazon FreeRTOS Supported Hardware Platforms
You need one of the supported MCU boards:

• STMicroelectronicsSTM32L4 Discovery kit IoT node

• Texas Instruments CC3220SF-LAUNCHXL

• NXP LPC54018 IoT Module

• Microchip Curiosity PIC32MZEF bundle

• Microsoft Windows 7 or later, with at least a dual core and a hard-wired Ethernet connection

Registering Your MCU Board with AWS IoT
You must register your MCU board so it can communicate with AWS IoT. Registering your device involves
creating an IoT thing, a private key, an X.509 certificate, and an AWS IoT policy. An IoT thing allows you
to manage your devices in AWS IoT. The private key and certificate allow your device to authenticate with
AWS IoT. The AWS IoT policy grants your device permissions to access AWS IoT resources.

To create an AWS IoT policy

1. To create an IAM policy, you need to know your AWS region and AWS account number.

To find your AWS account number, in the upper-right corner of the AWS Management Console,
choose My Account. Your account ID is displayed under Account Settings

To find the region your AWS account is in, open a command prompt window and type the following
command:

aws iot describe-endpoint

The output should look like this:

{
 "endpointAddress": "xxxxxxxxxxxxxx.iot.us-west-2.amazonaws.com"
}

In this example, the region is us-west-2.

2. Browse to the AWS IoT console.

3. In the left navigation pane, choose Secure, choose Policies, and then choose Create.

4. Type a name to identify your policy.

5. In the Add statements section, choose Advanced mode. Copy and paste the following JSON into the
policy editor window. Replace aws-region and aws-account with your region and account ID .

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:Connect",
 "Resource":"arn:aws:iot:<aws-region>:<aws-account-id>:*"

5

http://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
http://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
http://www.ti.com/tool/CC3220SF-LAUNCHXL
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc54000-series-cortex-m4-mcus/lpc54018-iot-module-for-the-lpc540xx-family-of-mcus:OM40007
http://www.microchip.com/developmenttools/productdetails.aspx?partno=dm320104
https://console.aws.amazon.com/iotv2/

Amazon FreeRTOS User Guide
Registering Your MCU Board with AWS IoT

 },
 {
 "Effect": "Allow",
 "Action": "iot:Publish",
 "Resource": "arn:aws:iot:<aws-region>:<aws-account-id>:*"
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": "arn:aws:iot:<aws-region>>:<aws-account-id>:*"
 },
 {
 "Effect": "Allow",
 "Action": "iot:Receive",
 "Resource": "arn:aws:iot:<aws-region>:<aws-account-id>:*"
 }
]
}

This policy grants the following permissions:

iot:Connect

Grants your device the permission to connect to the AWS IoT message broker.

iot:Publish

Grants your device the permission to publish an MQTT message on the freertos/demos/echo
MQTT topic.

iot:Subscribe

Grants your device the permission to subscribe to the freertos/demos/echo MQTT topic
filter.

iot:Receive

Grants your device the permission to receive messages from the AWS IoT message broker.

6. Choose Create.

To create an IoT thing, private key, and certificate for your device

1. Browse to the AWS IoT console.

2. In the left navigation pane, choose Manage, and then choose Things.

3. If you do not have any IoT things registered in your account, the You don't have any things yet page
is displayed. If you see this page, choose Register a thing. Otherwise, choose Create.

4. On the Creating AWS IoT things page, choose Create a single thing.

5. On the Add your device to the thing registry page, type a name for your thing, and then choose
Next.

6. On the Add a certificate for your thing page, under One-click certificate creation, choose Create
certificate.

7. Download your private key and certificate by choosing the Download links for each. Make a note of
the certificate ID. You need it later to attach a policy to your certificate.

8. Choose Activate to activate your certificate. Certificates must be activated prior to use.

9. Choose Done.

10. Choose Attach a policy to attach a policy to your certificate that grants your device access to AWS
IoT operations.

11. Choose the policy you just created and choose Register thing.

6

https://console.aws.amazon.com/iotv2/

Amazon FreeRTOS User Guide
Getting Started with the Texas

Instruments CC3220SF-LAUNCHXL

Getting Started with the Texas Instruments
CC3220SF-LAUNCHXL

Before you begin, see Prerequisites (p. 4).

If you do not have the Texas Instruments (TI) CC3220SF-LAUNCHXL Development Kit, you can purchase
one from Texas Instruments.

Setting Up Your Environment
Amazon FreeRTOS supports two IDEs for the TI CC3220SF-LAUNCHXL development kit: Code Composer
Studio and IAR Embedded Workbench. Before you begin, install one of the two IDEs:

Option 1: Install Texas Instruments Code Composer Studio

1. Browse to TI Code Composer Studio.

2. Download the offline installer for version 7.3.0 for the platform of your host machine (Windows,
macOS, or Linux 64-bit).

3. Unzip and run the offline installer. Follow the prompts.

4. For Product Families to Install, choose SimpleLink Wi-Fi CC32xx Wireless MCUs.

5. On the next page, accept the default settings for debugging probes, and then choose Finish.

If you experience issues when you are installing Code Composer Studio, see TI Development Tools
Support, Code Composer Studio FAQs, and Troubleshooting Code Composer Studio.

Option 2: Install IAR Embedded Workbench for ARM

1. Browse to IAR Embedded Workbench for ARM.

2. Download and run the Windows installer. Make sure that TI XDS is selected as one of the USB Debug
probe drivers:

7

http://www.ti.com/tool/CC3220SF-LAUNCHXL
http://processors.wiki.ti.com/index.php/Download_CCS
http://software-dl.ti.com/ccs/esd/documents/ccs_support.html
http://software-dl.ti.com/ccs/esd/documents/ccs_support.html
http://processors.wiki.ti.com/index.php/FAQ_-_CCS
http://processors.wiki.ti.com/index.php/Troubleshooting_CCS
https://www.iar.com/iar-embedded-workbench/#!?architecture=Arm

Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

3. Complete the installation and launch the program. In the License Wizard panel, choose Register
with IAR Systems to get an evaluation license, or use your own IAR license.

Download and Build Amazon FreeRTOS
After your environment is set up, you can download Amazon FreeRTOS and run the sample code.

Download Amazon FreeRTOS
1. Browse to the AWS IoT console.

2. In the navigation pane, choose Software.

3. Under Amazon FreeRTOS Device Software, choose Configure download.

4. Under Software Configurations, find Connect to AWS IoT- TI, and then:

Option 1 (if you are using CCS): choose Download.

Option 2 (if you are using IAR): choose Connect to AWS IoT-TI. Under Hardware platform, choose
Edit. Under Integrated Development Environment (IDE), choose IAR Embedded Workbench from
the drop-down list. Make sure the compiler is set to IAR. Then choose Create and Download.

8

Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

5. Unzip the downloaded file to a folder, and make a note of the folder path. In this tutorial, this folder
is referred to as BASE_FOLDER.

Note
The maximum length of a file path on Microsoft Windows is 260 characters. The longest path
in the Amazon FreeRTOS download is 122 characters. To accommodate the files in the Amazon
FreeRTOS projects, make sure the path to the AmazonFreeRTOS directory is fewer than 98
characters long. For example, C:\Users\Username\Dev\AmazonFreeRTOS works, but C:
\Users\Username\Documents\Development\Projects\AmazonFreeRTOS causes build
failures.

Import the Amazon FreeRTOS Sample Code into TI Code
Composer

(Follow these steps if you are using TI Code Composer.)

1. Open TI Code Composer and choose OK to accept the default workspace name.

9

Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

2. On the Getting Started page, choose Import Project.

3. In the Select search-directory text box, type <BASE_FOLDER>\AmazonFreeRTOS\demos\ti
\cc3220_launchpad\ccs. The project aws_demos should be selected by default. To import the
project into TI Code Composer, choose Finish.

4. From the Project menu, choose Build Project to make sure it compiles without errors or warnings.

Import the Amazon FreeRTOS Sample Code into IAR Embedded
Workbench

(Follow these steps if you are using IAR Embedded Workbench.)

1. Open IAR Embedded Workbench and choose File > Open Workspace.

2. Navigate to <BASE_FOLDER>\AmazonFreeRTOS\demos\ti\cc3220_launchpad\iar and
choose aws_demos.eww then choose OK.

3. Right-click on the project name (aws_demos) then choose Make.

Configure Your Project

In the Project Explorer window, open aws_demos\application_code\common_demos\include
\aws_clientcredential.h.

To configure your project you need to know your AWS IoT endpoint.

To find your AWS IoT endpoint

1. Browse to the AWS IoT console.

2. In the left navigation pane, choose Settings.

3. Copy your AWS IoT endpoint from the Endpoint text box. It should look like
<1234567890123>.iot.<us-east-1>.amazonaws.com.

4. Open aws_demos/application_code/common_demos/include/aws_clientcredential.h
and set clientcredentialMQTT_BROKER_ENDPOINT to your AWS IoT endpoint. Save your
changes.

You also need to know your Wi-FI network SSID, password, and security type, and the name of the AWS
IoT thing that represents your device. Valid security types are:

• eWiFiSecurityOpen: Open, no security.

• eWiFiSecurityWEP: WEP security.

• eWiFiSecurityWPA: WPA security.

• eWiFiSecurityWPA2: WPA2 security.

In the Project Explorer window, open aws_demos\application_code\common_demos\include
\aws_clientcredential.h.

Specify values for the following #define constants:

• clientcredentialMQTT_BROKER_ENDPOINT: Your AWS IoT endpoint.

• clientcredentialIOT_THING_NAME: The AWS IoT thing for your board.

• clientcredentialWIFI_SSID: The SSID for your Wi-Fi network.

10

https://console.aws.amazon.com/iotv2/

Amazon FreeRTOS User Guide
Run the FreeRTOS Samples

• clientcredentialWIFI_PASSWORD: The password for your Wi-Fi network.

• clientcredentialWIFI_SECURITY: The security type for your Wi-Fi network.

Make sure to save your changes.

Configure Your AWS IoT Credentials

The certificate and private key must be hard-coded into the Amazon FreeRTOS demo code. Amazon
FreeRTOS is a C language project, and the certificate and private key must be specially formatted to be
added to the project.

To format your certificate and private key

1. In a browser window, open <BASE_FOLDER>\demos\common\devmode_key_provisioning
\CertificateConfigurationTool\CertificateConfigurator.html.

2. Under Certificate PEM file, choose the <ID>-certificate.pem.crt you downloaded from the
AWS IoT console.

3. Under Private Key PEM file, choose the <ID>-private.pem.key you downloaded from the AWS
IoT console.

4. Choose Generate and save aws_clientcredential_keys.h, and then save the file in
<BASE_FOLDER>\demos\common\include. This overwrites the stub file in the directory.

Run the FreeRTOS Samples
1. Make sure the SOP jumper on your Texas Instruments CC3220SF-LAUNCHXL is in position 0.

2. Use a USB cable to connect your Texas Instruments CC3220SF-LAUNCHXL to your computer.

3. Rebuild your project.

4. Sign in to the AWS IoT console.

5. In the left navigation pane, choose Test to open the MQTT client.

6. In the Subscription topic text box, type freertos/demos/echo, and then choose Subscribe to
topic.

7. From the Run menu in TI Code Composer, choose Debug to start debugging.

8. When the debugger stops at the breakpoint in main(), go to the Run menu, and then choose
Resume.

In the MQTT client in the AWS IoT console, you should see the MQTT messages sent by your device.

Troubleshooting
If you don’t see messages received in the MQTT client of the AWS IoT console, you might need to
configure debug settings for the board.

1. In Code Composer, on Project Explorer, choose aws_demos.

2. From the Run menu, choose Debug Configurations.

3. In the left navigation pane, choose aws_demos.

4. Choose the Target tab in the main window.

5. Scroll down to the Connection Options section and select the Reset the target on a connect check
box.

6. Choose Apply, and then choose Close to close the Debug Configurations dialog box.

11

https://console.aws.amazon.com/iotv2/

Amazon FreeRTOS User Guide
Getting Started with the STMicroelectronics

STM32L4 Discovery Kit IoT Node

If your device hangs after calling sl_Start(), you might need to update the service pack running on
the network processor on the TI chip.

To update the service pack

1. On your TI CC3220SF-LAUNCHXL, place the SOP jumper on the middle set of pins (position = 1) and
reset the board.

2. Start Uniflash and from the list of configurations, choose CC3200SF-LAUNCHXL, and then choose
Start Image Creator.

3. Choose New Project.

4. On the Start new project page, type a name for your project. Set Device Type to CC3220SF. Set
Device Mode to Develop, and then choose Create Project.

5. Disconnect your serial terminal (if previously connected) and on the right side of the Uniflash
application window, choose Connect.

6. From the left column, choose Service Pack.

7. Choose Browse, and then navigate to where you installed the CC3220SF SimpleLink SDK. The
service pack is located at ti\simplelink_cc32xx_sdk_VERSION\tools\cc32xx_tools
\servicepack-cc3x20\sp_VERSION.bin.

8.

Choose the button and then choose Program Image (Create & Program) to install the
service pack. Remember to switch the SOP jumper back to position 0 and reset the board.

If these steps don’t work, look at the program's output in the serial terminal. You should see some text
that indicates the source of the problem.

Getting Started with the STMicroelectronics
STM32L4 Discovery Kit IoT Node

Before you begin, see Prerequisites (p. 4).

If you do not already have the STMicroelectronics STM32L4 Discovery Kit IoT Node, you can purchase
one from STMicroelectronics.

Setting Up Your Environment
Install System Workbench for STM32

1. Browse to OpenSTM32.org.

2. Register on the OpenSTM32 webpage. You need to sign in to download System Workbench.

3. Browse to the System Workbench for STM32 installer to download and install System Workbench.

If you experience issues during installation, see the FAQs on the System Workbench website.

Download and Build Amazon FreeRTOS
After your environment is set up, you can download Amazon FreeRTOS and run the sample code.

12

http://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
http://www.openstm32.org/HomePage
http://www.openstm32.org/System%2BWorkbench%2Bfor%2BSTM32
http://www.openstm32.org/HomePage

Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

Download Amazon FreeRTOS
1. In the AWS IoT console, browse to the Amazon FreeRTOS page.

2. In the left navigation pane, choose Software.

3. Under Amazon FreeRTOS Device Software, choose Configure download.

4. Choose Download FreeRTOS Software.

5. Under Software Configurations, find Connect to AWS IoT- ST, and then choose Download.

6. Unzip the downloaded file to a folder, and make a note of the folder path. In this tutorial, this folder
is referred to as BASE_FOLDER.

Note
The maximum length of a file path on Microsoft Windows is 260 characters. The longest path
in the Amazon FreeRTOS download is 122 characters. To accommodate the files in the Amazon
FreeRTOS projects, make sure the path to the AmazonFreeRTOS directory is fewer than 98
characters long. For example, C:\Users\Username\Dev\AmazonFreeRTOS works, but C:

13

https://console.aws.amazon.com/freertos

Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

\Users\Username\Documents\Development\Projects\AmazonFreeRTOS causes build
failures.

Import the Amazon FreeRTOS Sample Code into the STM32
System Workbench
1. Open the STM32 System Workbench and type a name for a new workspace.

2. From the File menu, choose Import. Expand General, choose Existing Projects into Workspace, and
then choose Next.

3. In the Select Root Directory text box, type <BASE_FOLDER>\AmazonFreeRTOS\demos\st
\stm32l475_discovery\ac6.

4. The project aws_demos should be found and selected by default.

5. Choose Finish to import the project into STM32 System Workbench.

6. From the Project menu, choose Build All and make sure it compiles without any errors or warnings.

Configure Your Project
To configure your project, you need to know your AWS IoT endpoint.

To find your AWS IoT endpoint

1. Browse to the AWS IoT console.

2. In the left navigation pane, choose Settings.

3. Copy your AWS IoT endpoint from the Endpoint text box. It should look like
<1234567890123>.iot.<us-east-1>.amazonaws.com.

4. Open aws_demos/application_code/common_demos/include/aws_clientcredential.h
and set clientcredentialMQTT_BROKER_ENDPOINT to your AWS IoT endpoint. Save your
changes.

You also need to know your Wi-FI network SSID, password, and security type and the name of the AWS
IoT thing that represents your device. Valid security types are:

• eWiFiSecurityOpen: Open, no security.

• eWiFiSecurityWEP: WEP security.

• eWiFiSecurityWPA: WPA security.

• eWiFiSecurityWPA2: WPA2 security.

In the Project Explorer window, open aws_demos\application_code\common_demos\include
\aws_clientcredential.h.

Specify values for the following #define constants:

• clientcredentialMQTT_BROKER_ENDPOINT: Your AWS IoT endpoint.

• clientcredentialIOT_THING_NAME: The AWS IoT thing for your board.

• clientcredentialWIFI_SSID: The SSID for your Wi-Fi network.

• clientcredentialWIFI_PASSWORD: The password for your Wi-Fi network.

• clientcredentialWIFI_SECURITY: The security type for your Wi-Fi network.

Make sure to save your changes.

14

https://console.aws.amazon.com/iotv2/

Amazon FreeRTOS User Guide
Run the FreeRTOS Samples

Configure Your AWS IoT Credentials

The certificate and private key must be hard-coded into the Amazon FreeRTOS demo code. Amazon
FreeRTOS is a C language project, and the certificate and private key must be specially formatted to be
added to the project.

To format your certificate and private key

1. In a browser window, open <BASE_FOLDER>\demos\common\devmode_key_provisioning
\CertificateConfigurationTool\CertificateConfigurator.html.

2. Under Certificate PEM file, choose the <ID>-certificate.pem.crt you downloaded from the
AWS IoT console.

3. Under Private Key PEM file, choose the <ID>-private.pem.key you downloaded from the AWS
IoT console.

4. Choose Generate and save aws_clientcredential_keys.h, and then save the file in
<BASE_FOLDER>\demos\common\include. This overwrites the stub file in the directory.

Run the FreeRTOS Samples
1. Use a USB cable to connect your STMicroelectronics STM32L4 Discovery Kit IoT Node to your

computer.
2. Rebuild your project.
3. Sign in to the AWS IoT console.
4. In the left navigation pane, choose Test to open the MQTT client.
5. In the Subscription topic text box, type freertos/demos/echo, and then choose Subscribe to

topic.
6. From the Project Explorer, right-click aws_demos, choose Debug As, and then choose Ac6 STM32

C/C++ Application.

If a debug error occurs the first time a debug session is launched, follow these steps:

1. In STM32 System Workbench, from the Run menu, choose Debug Configurations.
2. In list box on the left, choose aws_demos Debug. (You might need to expand Ac6 STM32

Debugging.)
3. Choose the Debugger tab.
4. In Configuration Script, choose Show Generator Options.
5. In Mode Setup, set Reset Mode to Software System Reset. Choose Apply, and then choose

Debug.
7. When the debugger stops at the breakpoint in main(), from the Run menu, choose Resume.

In the MQTT client in AWS IoT, you should see the MQTT messages sent by your device.

Getting Started with the NXP LPC54018 IoT
Module

Before you begin, see Prerequisites (p. 4).

If you do not have an NXP LPC54018 IoT Module, you can order one from NXP. Use a USB cable to
connect your NXP LPC54018 IoT Module to your computer.

15

https://console.aws.amazon.com/iotv2/
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc54000-series-cortex-m4-mcus/lpc54018-iot-module-for-the-lpc540xx-family-of-mcus:OM40007?fsrch=1&sr=1&pageNum=1

Amazon FreeRTOS User Guide
Setting Up Your Environment

Setting Up Your Environment
Amazon FreeRTOS supports two IDEs for the NXP LPC54018 IoT Module: IAR Embedded Workbench and
MCUXpresso. Before you begin, install one of the two IDEs:

To install IAR Embedded Workbench for Arm

1. Browse to Software for NXP Kits and choose Download Software to install IAR Embedded
Workbench for Arm.

Note
IAR Embedded Workbench for ARM requires Microsoft Windows.

2. Unzip and run the installer. Follow the prompts.
3. In the License Wizard, choose Register with IAR Systems to get an evaluation license.

To install MCUXpresso from NXP

1. Download and run the MCUXpresso installer from NXP.
2. Browse to MCUXpresso SDK and choose Build your SDK.
3. Choose Select Development Board.
4. Under Select Development Board, type LPC54018-IoT-Module in the Search by Name text box.
5. Under Boards choose LPC54018-IoT-Module.
6. On the right-hand side of the page, verify the hardware details and choose Build MCUXepresso

SDK.
7. The SDK for Windows using the MCUXpresso IDE is already built. Choose Download SDK. If you are

using another operating system, under Host OS, choose your operating system and then choose
Download SDK.

8. Start the MCUXpresso IDE. In the bottom of the MCUXpresso IDE screen, choose the Installed SDKs
tab.

9. Drag and drop the downloaded sdk archive file into the Installed SDKs window.

Note
If you experience issues during installation, see NXP Support or NXP Developer Resources.

Connecting a JTAG Debugger
You need a JTAG debugger to launch and debug your code running on the NXP LPC54018 board.
Amazon FreeRTOS was tested using a Segger J-Link probe. For more information about supported
debuggers, see the NXP LPC54018 User Guide.

Note
If you are using a Segger J-Link debugger, you need a converter cable to connect the 20-pin
connector from the debugger to the 10-pin connector on the NXP IoT module.

Download and Build Amazon FreeRTOS
After your environment is set up, you can download Amazon FreeRTOS and run the sample code.

Download Amazon FreeRTOS
1. Browse to the Amazon FreeRTOS page in the AWS IoT console.
2. In the left navigation pane, choose Software.
3. Under Amazon FreeRTOS Device Software, choose Configure download.

16

https://www.iar.com/iar-embedded-workbench/partners/nxp/downloads-for-nxp-kits
https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/support/developer-resources/software-development-tools/mcuxpresso-software-and-tools/mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK
https://www.nxp.com/support/support:SUPPORTHOME?tid=sbmenu
https://www.nxp.com/support/developer-resources:DEVELOPER_HOME
https://www.nxp.com/docs/en/user-guide/UM11078.pdf
https://console.aws.amazon.com/freertos

Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

4. Choose Download FreeRTOS Software.
5. If you are using IAR Workbench:

• In the Software Configurations, find Connect to AWS IoT- NXP and choose Download.
6. If you are using MCUXpresso:

a. In the Software Configurations, find Connect to AWS IoT- NXP. Select the Connect to AWS
IoT- NXP text, do not choose Download.

b. Under Hardware Platform choose Edit.
c. Under Integrated Development Environment (IDE), choose MCUXpresso
d. Under Compiler, choose GCC.
e. At the bottom of the page, choose Create and Download.

7. Unzip the downloaded file to a folder and make a note of the folder path. In this tutorial, this folder
is referred to as BASE_FOLDER.

Note
The maximum length of a file path on Microsoft Windows is 260 characters. The longest path
in the Amazon FreeRTOS download is 122 characters. To accommodate the files in the Amazon
FreeRTOS projects, make sure the path to the AmazonFreeRTOS directory is fewer than 98
characters long. For example, C:\Users\Username\Dev\AmazonFreeRTOS works, but C:
\Users\Username\Documents\Development\Projects\AmazonFreeRTOS causes build
failures.

Import the Amazon FreeRTOS Sample Code into Your IDE
To import the Amazon FreeRTOS sample code into the IAR Embedded Workbench IDE

1. Open IAR Embedded Workbench, and from the File menu, choose Open Workspace.
2. In the search-directory text box, type <BASE_FOLDER>\AmazonFreeRTOS\demos\nxp

\lpc54018_iot_module\iar, and choose aws_demos.eww.
3. In the Project menu, choose Rebuild All.

To import the Amazon FreeRTOS sample code into the MCUXpresso IDE

1. Open MCUXpresso and from the File menu, choose Open Projects From File System...
2. In the Directory text box, type <BASE_FOLDER>\AmazonFreeRTOS\demos\nxp

\lpc54018_iot_module\mcuxpresso and choose Finish
3. In the Project menu, choose Build All.

Configure Your Project
To configure your project, you need to know your AWS IoT endpoint.

To find your AWS IoT endpoint

1. Browse to the AWS IoT console.
2. In the left navigation pane, choose Settings.
3. Copy your AWS IoT endpoint from the Endpoint text box. It should look like

<1234567890123>.iot.<us-east-1>.amazonaws.com.
4. Open aws_demos/application_code/common_demos/include/aws_clientcredential.h

and set clientcredentialMQTT_BROKER_ENDPOINT to your AWS IoT endpoint. Save your
changes.

17

https://console.aws.amazon.com/iotv2/

Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

You also need to know your Wi-FI network SSID, password, and security type and the name of the AWS
IoT thing that represents your device. Valid security types are:

• eWiFiSecurityOpen: Open, no security.
• eWiFiSecurityWEP: WEP security.
• eWiFiSecurityWPA: WPA security.
• eWiFiSecurityWPA2: WPA2 security.

In your IDE, open aws_demos\application_code\common_demos\include
\aws_clientcredential.h.

Specify values for the following #define constants:

• clientcredentialMQTT_BROKER_ENDPOINT: Your AWS IoT endpoint.
• clientcredentialIOT_THING_NAME: The AWS IoT thing for your board.
• clientcredentialWIFI_SSID: The SSID for your Wi-Fi network.
• clientcredentialWIFI_PASSWORD: The password for your Wi-Fi network.
• clientcredentialWIFI_SECURITY: The security type for your Wi-Fi network.

Make sure to save your changes.

Configure Your AWS IoT Credentials

The certificate and private key must be hard-coded into the Amazon FreeRTOS demo code. Amazon
FreeRTOS is a C language project, and the certificate and private key must be specially formatted to be
added to the project.

To format your certificate and private key

1. In a browser window, open <BASE_FOLDER>\demos\common\devmode_key_provisioning
\CertificateConfigurationTool\CertificateConfigurator.html.

2. Under Certificate PEM file, choose the <ID>-certificate.pem.crt you downloaded from the
AWS IoT console.

3. Under Private Key PEM file, choose the <ID>-private.pem.key you downloaded from the AWS
IoT console.

4. Choose Generate and save aws_clientcredential_keys.h, and then save the file in
<BASE_FOLDER>\demos\common\include. This overwrites the stub file in the directory.

Run the FreeRTOS Samples
To run the Amazon FreeRTOS demos on the NXP LPC54018 IoT Module board, connect the USB port on
the NXP IoT Module to your host computer, open a terminal program, and connect to the port identified
as "USB Serial Device."

1. Rebuild your project.
2. Sign in to the AWS IoT console.
3. In the left navigation pane, choose Test to open the MQTT client.
4. In the Subscription topic text box, type freertos/demos/echo, and then choose Subscribe to

topic.
5. In your IDE, from the Project menu, choose Build.
6. Connect both the NXP IoT Module and the Segger J-Link Debugger to the USB ports on your

computer using mini-USB to USB cables.

18

https://console.aws.amazon.com/iotv2/

Amazon FreeRTOS User Guide
Getting Started with the Microchip Curiosity PIC32MZEF

7. If you are using IAR Embedded Workbench:

a. From the Project menu, choose Download and Debug.
b. From the Debug menu, choose Start Debugging.
c. When the debugger stops at the breakpoint in main, go to the Debug menu and choose Go.

Note
If a J-Link Device Selection dialog box opens, choose OK to continue. In the Target Device
Settings dialog box, choose Unspecified, choose Cortex-M4, and then choose OK. You only
need to be do this once.

8. If you are using MCUXpresso:

a. If this is your first time debugging, select the aws_demos project and from the Debug
toolbar, choose the blue debug button (Start debugging the project with the selected build
configuration).

b. A window is displayed with any detected debug probes, choose the probe you want to use and
click OK to start debugging.

Note
When the debugger stops at the breakpoint in main(), press the debug restart button

 once to reset the debugging session. (This is due to an ongoing bug with
MCUXpresso debugger for NXP54018-IoT-Module).

9. When the debugger stops at the breakpoint in main(), go to the Debug menu, and choose Go.

In the MQTT client in the AWS IoT console, you should see the MQTT messages sent by your device.

Troubleshooting
If no messages appear in the AWS IoT console, try the following:

1. Open a terminal window to view the logging output of the sample. This can help you determine
what is going wrong.

2. Check that your network credentials are valid.

Getting Started with the Microchip Curiosity
PIC32MZEF

Before you begin, see Prerequisites (p. 4).

If you do not have the Microchip Curiosity PIC32MZEF bundle, you can purchase one from Microchip. You
need the following items:

• MikroElectronika USB UART Click Board
• RJ-11 to ICSP Adapter
• MPLAB ICD 4 In-Circuit Debugger
• PIC32 LAN8720 PHY daughter board
• MikroElectronika WiFi 7 Click Board

19

http://www.microchipdirect.com/product/search/all/dm320104-BNDL
https://www.mikroe.com/usb-uart-click
https://www.microchipdirect.com/product/search/all/ac164110
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DV164045
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ac320004-3
https://www.mikroe.com/wifi-7-click

Amazon FreeRTOS User Guide
Setting Up the Microchip Curiosity PIC32MZEF Hardware

Setting Up the Microchip Curiosity PIC32MZEF
Hardware
1. Connect the MikroElectronika USB UART Click Board to the microBUS 1 connector on the Microchip

Curiosity PIC32MZEF.
2. Connect the PIC32 LAN8720 PHY daughter board to the J18 header on the Microchip Curiosity

PIC32MZEF.
3. Connect the MikroElectronika USB UART Click Board to your computer using a USB A to USB Mini B

cable.
4. Connect the MikroElectronika WiFi 7 Click Board to the microBUS 2 connector on the Microchip

Curiosity PIC32MZEF.
5. Connect the RJ-11 to ICSP Adapter to the Microchip Curiosity PIC32MZEF.
6. Connect the MPLAB ICD 4 In-Circuit Debugger to your Microchip Curiosity PIC32MZEF using an

RJ-11 cable.
7. Connect the ICD 4 In-Circuit Debugger to your computer using a USB A to USB mini-B cable.
8. Insert the RJ-11 to ICSP Adaptor J2 into the ICSP header on the Microchip Curiosity PIC32MZEF at

the J16.
9. Connect one end of an Ethernet cable to the LAN8720 PHY daughter board. Connect the other end

of the Ethernet cable to your router or other internet port.

The following image shows the Microchip Curiosity PIC32MZEF and all required peripherals assembled.

The LED on in-circuit debugger will turn on a solid blue when it is ready.

20

https://download.mikroe.com/documents/add-on-boards/click/usb-uart/usb-uart-click-manual-v100.pdf
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ac320004-3
https://www.mikroe.com/usb-uart-click
https://www.mikroe.com/wifi-7-click
https://www.microchipdirect.com/product/search/all/ac164110

Amazon FreeRTOS User Guide
Setting Up Your Environment

Setting Up Your Environment
1. Install the latest Java SE SDK.

2. Install the latest version of the MPLAB X Integrated Development Environment:

• MPLAB X Integrated Development Environment for Windows

• MPLAB X Integrated Development Environment for macOS

• MPLAB X Integrated Development Environment for Linux

3. Install the latest version of the MPLAB XC32 Compiler:

• MPLAB XC32/32++ Compiler for Windows

• MPLAB XC32/32++ Compiler for macOS

• MPLAB XC32/32++ Compiler for Linux

4. Install the latest version of the MPLAB Harmony Integrated Software Framework (optional):

• MPLAB Harmony Integrated Software Framework for Windows

• MPLAB Harmony Integrated Software Framework for macOS

• MPLAB Harmony Integrated Software Framework for Linux

5. Start up a UART terminal emulator and open a connection with the following settings:

• Baud rate: 115200

• Data: 8 bit

• Parity: None

• Stop bits: 1

• Flow control: None

Download and Build Amazon FreeRTOS
After your environment is set up, you can download Amazon FreeRTOS and run the sample code.

Download Amazon FreeRTOS
1. Browse to the Amazon FreeRTOS page in the AWS IoT console.

2. In the left navigation pane, choose Software.

3. Under Amazon FreeRTOS Device Software, choose Configure download.

4. Choose Download FreeRTOS Software.

5. In Software Configurations, find Connect to AWS IoT- Microchip, and then choose Download.

21

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.microchip.com/mplabx-ide-windows-installer
http://www.microchip.com/mplabx-ide-osx-installer
http://www.microchip.com/mplabx-ide-linux-installer
http://www.microchip.com/mplabxc32windows
http://www.microchip.com/mplabxc32osx
http://www.microchip.com/mplabxclinux
http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en603881
http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en603883
http://www.microchip.com/mymicrochip/filehandler.aspx?ddocname=en603882
https://console.aws.amazon.com/freertos

Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

6. Unzip the downloaded file to a folder, and make a note of the folder path. In this tutorial, this folder
is referred to as BASE_FOLDER.

Note
The maximum length of a file path on Microsoft Windows is 260 characters. The longest path
in the Amazon FreeRTOS download is 122 characters. To accommodate the files in the Amazon
FreeRTOS projects, make sure the path to the AmazonFreeRTOS directory is fewer than 98
characters long. For example, C:\Users\Username\Dev\AmazonFreeRTOS works, but C:
\Users\Username\Documents\Development\Projects\AmazonFreeRTOS causes build
failures.

Open the Amazon FreeRTOS Demo Application in the MPLAB
IDE
1. In the MPLAB IDE, from the File menu, choose Open Project.

2. Browse to and open <BASE_FOLDER>\AmazonFreeRTOS\demos\microchip
\curiosity_pic32mzef\mplab.

22

Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

3. Choose Open project to import the project.

Note
You may see some warning messages when opening the project for the first time. These
messages may look like the following:

warning: Configuration "pic32mz_ef_curiosity" builds with "XC32", but indicates no
 toolchain directory.
warning: Configuration "pic32mz_ef_curiosity" refers to file "AmazonFreeRTOS/lib/
third_party/mcu_vendor/microchip/harmony/framework/bootloader/src/bootloader.h"
 which does not exist in the disk. The make process might not build correctly.

These warnings may be ignored.

Configure Your Project

To configure your project, you need to know your AWS IoT endpoint.

To find your AWS IoT endpoint

1. Browse to the AWS IoT console.

2. In the left navigation pane, choose Settings.

3. Copy your AWS IoT endpoint from the Endpoint text box. It should look like
<1234567890123>.iot.<us-east-1>.amazonaws.com.

You also need to know your Wi-FI network SSID, password, and security type and the name of the AWS
IoT thing that represents your device.

In the Project Explorer window, open aws_demos\application_code\common_demos\include
\aws_clientcredential.h.

Specify values for the following #define constants:

• clientcredentialMQTT_BROKER_ENDPOINT: Your AWS IoT endpoint.

• clientcredentialIOT_THING_NAME: The AWS IoT thing for your board.

• clientcredentialWIFI_SSID: The SSID for your Wi-Fi network.

• clientcredentialWIFI_PASSWORD: The password for your Wi-Fi network.

• clientcredentialWIFI_SECURITY: The security type for your Wi-Fi network. Valid security types
are:

• eWiFiSecurityOpen: Open, no security.

• eWiFiSecurityWEP: WEP security.

• eWiFiSecurityWPA: WPA security.

• eWiFiSecurityWPA2: WPA2 security.

Make sure to save your changes.

Configure Your AWS IoT Credentials

The certificate and private key must be hard-coded into the Amazon FreeRTOS demo code. Amazon
FreeRTOS is a C language project, and the certificate and private key must be specially formatted to be
added to the project.

23

https://console.aws.amazon.com/iotv2/

Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

To format your certificate and private key

1. In a browser window, open <BASE_FOLDER>\demos\common\devmode_key_provisioning
\CertificateConfigurationTool\CertificateConfigurator.html.

2. Under Certificate PEM file, choose the <ID>-certificate.pem.crt you downloaded from the
AWS IoT console.

3. Under Private Key PEM file, choose the <ID>-private.pem.key you downloaded from the AWS
IoT console.

4. Choose Generate and save aws_clientcredential_keys.h, and then save the file in
<BASE_FOLDER>\demos\common\include. This overwrites the stub file in the directory.

Run the FreeRTOS Samples
1. On the Projects tab, right-click the aws_demos top-level folder and then choose Debug.

2. The first time you debug the samples, an ICD 4 not Found dialog box appears. In the tree view,
under the ICD 4 node, choose the ICD4 serial number, and then choose OK.

The ICD 4 turns half yellow as it is programming the device, and then half green when it is running. The
ICD4 tab appears in the IDE. Successful programming looks like the following:

Connecting to MPLAB ICD 4...

Currently loaded versions:
Application version............01.02.00
Boot version...................01.00.00
FPGA version...................01.00.00
Script version.................00.02.18
Script build number............fd44437f19
Application build number.......0123456789

Connecting to MPLAB ICD 4...

Currently loaded versions:
Boot version...................01.00.00
Updating firmware application...
Connecting to MPLAB ICD 4...

Currently loaded versions:
Application version............01.02.16
Boot version...................01.00.00
FPGA version...................01.00.00
Script version.................00.02.18
Script build number............fd44437f19
Application build number.......0123456789

Target voltage detected
Target device PIC32MZ2048EFM100 found.
Device Id Revision = 0xA1
Serial Number:
Num0 = ec4f6d3c
Num1 = 6b845410

Erasing...

The following memory area(s) will be programmed:

24

Amazon FreeRTOS User Guide
Getting Started with the FreeRTOS Windows Simulator

program memory: start address = 0x1d000000, end address = 0x1d07bfff
program memory: start address = 0x1d1fc000, end address = 0x1d1fffff
configuration memory
boot config memory

Programming/Verify complete

Running

Note
We recommend that you use the MPLAB In-Circuit Debugger instead of the USB port for
debugging. The ICD 4 makes it possible for you to step through code more quickly and add
breakpoints without restarting the debugger.

In the MQTT client in the AWS IoT console, you should see the MQTT messages sent by your device.

Troubleshooting
If no messages appear in the AWS IoT console, try the following:

1. Open a terminal window to view the logging output of the sample. This can help you determine
what is going wrong.

2. Check that your network credentials are valid.

Getting Started with the FreeRTOS Windows
Simulator

Before you begin, see Prerequisites (p. 4).

Amazon FreeRTOS is released as a zip file that contains the Amazon FreeRTOS libraries and sample
applications for the platform you specify. To run the samples on a Windows machine, download the
libraries and samples ported to run on Windows. This set of files is referred to as the FreeRTOS simulator
for Windows.

Setting Up Your Environment
1. Install the latest version of WinPCap.

2. Install Microsoft Visual Studio Community 2017.

3. Make sure that you have an active hard-wired Ethernet connection.

Download and Build Amazon FreeRTOS
After your environment is set up, you can download Amazon FreeRTOS and run the sample code.

Download Amazon FreeRTOS
1. In the AWS IoT console, browse to the Amazon FreeRTOS page.

2. In the left navigation pane, choose Software.

3. Under Amazon FreeRTOS Device Software, choose Configure download.

4. Choose Download FreeRTOS Software.

25

https://www.winpcap.org/
https://www.visualstudio.com/downloads
https://console.aws.amazon.com/freertos

Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

5. In the list of software configurations, find the Connect to AWS IoT- Windows predefined
configuration for the Windows simulator, and then choose Download.

6. Unzip the downloaded file to a folder, and make a note of the folder path. In this tutorial, this folder
is referred to as BASE_FOLDER.

Note
The maximum length of a file path on Microsoft Windows is 260 characters. The longest path
in the Amazon FreeRTOS download is 122 characters. To accommodate the files in the Amazon
FreeRTOS projects, make sure the path to the AmazonFreeRTOS directory is fewer than 98
characters long. For example, C:\Users\Username\Dev\AmazonFreeRTOS works, but C:
\Users\Username\Documents\Development\Projects\AmazonFreeRTOS causes build
failures.

Load the Amazon FreeRTOS Sample Code into Visual Studio
1. In Visual Studio, go to the File menu, choose Open, choose File/Solution, navigate to

<BASE_FOLDER>\AmazonFreeRTOS\demos\pc\windows\visual_studio\aws_demos.sln,
and then choose Open.

26

Amazon FreeRTOS User Guide
Download and Build Amazon FreeRTOS

2. From the Build menu, choose Build Solution, and make sure the solution builds without errors or
warnings.

Configure Your Project

Configure Your Network Interface

1. Run the project in Visual Studio. The program enumerates your network interfaces. Find the number
for your hard-wired Ethernet interface. The output should look like this:

0 0 [None] FreeRTOS_IPInit
1 0 [None] vTaskStartScheduler
1. rpcap://\Device\NPF_{AD01B877-A0C1-4F33-8256-EE1F4480B70D}
(Network adapter 'Intel(R) Ethernet Connection (4) I219-LM' on local host)

2. rpcap://\Device\NPF_{337F7AF9-2520-4667-8EFF-2B575A98B580}
(Network adapter 'Microsoft' on local host)

The interface that will be opened is set by "configNETWORK_INTERFACE_TO_USE" which
 should be defined in FreeRTOSConfig.h Attempting to open interface number 1.

You might see output in the debugger that says Cannot find or open the PDB file. You can ignore
these messages.

You can close the application window after you have identified the number for your hard-wired
Ethernet interface.

2. Open AmazonFreeRTOS\demos\pc\windows\common\config_files\FreeRTOSConfig.h
and set configNETWORK_INTERFACE_TO_USE to the number that corresponds to your hard-wired
network interface.

Configure Your AWS IoT Endpoint

You must specify a custom AWS IoT endpoint for the FreeRTOS sample code to connect to AWS IoT.

1. Browse to the AWS IoT console.
2. In the left navigation pane, choose Settings.
3. Copy your custom AWS IoT endpoint from the Endpoint text box. It should look like

<c3p0r2d2a1b2c3>.iot.<us-east-1>.amazonaws.com.
4. Open aws_demos/application_code/common_demos/include/aws_clientcredential.h

and set clientcredentialMQTT_BROKER_ENDPOINT to your AWS IoT endpoint.

Configure Your AWS IoT Credentials

The certificate and private key must be hard-coded into the Amazon FreeRTOS simulator code. Amazon
FreeRTOS is a C language project, and the certificate and private key must be specially formatted to be
added to the project.

To format your certificate and private key

1. In a browser window, open <BASE_FOLDER>\demos\common\devmode_key_provisioning
\CertificateConfigurationTool\CertificateConfigurator.html.

2. Under Certificate PEM file, choose the <ID>-certificate.pem.crt you downloaded from the
AWS IoT console.

27

https://console.aws.amazon.com/iotv2/

Amazon FreeRTOS User Guide
Run the FreeRTOS Samples

3. Under Private Key PEM file, choose the <ID>-private.pem.key you downloaded from the AWS
IoT console.

4. Choose Generate and save aws_clientcredential_keys.h and save the file in
<BASE_FOLDER>\demos\common\include. This overwrites the stub file in the directory.

Run the FreeRTOS Samples
1. Rebuild your Visual Studio project to pick up changes made in the header files.
2. Sign in to the AWS IoT console.
3. In the left navigation pane, choose Test to open the MQTT client.
4. In the Subscription topic text box, type freertos/demos/echo, and then choose Subscribe to

topic.
5. From the Debug menu in Visual Studio, choose Start Debugging.

In the AWS IoT console, the MQTT client displays the messages received from the FreeRTOS Windows
simulator.

28

https://console.aws.amazon.com/iotv2/
https://console.aws.amazon.com/iotv2/

Amazon FreeRTOS User Guide
Navigating the Demo Applications

Amazon FreeRTOS Demo Projects
This section contains resources that are useful after you have a basic understanding of Amazon
FreeRTOS. If you haven't already, we recommend that you first read the Getting Started with Amazon
FreeRTOS (p. 4).

Topics

• Navigating the Demo Applications (p. 29)

• Device Shadow Demo Application (p. 30)

• Greengrass Discovery Demo Application (p. 32)

• OTA Demo Application (p. 32)

Navigating the Demo Applications

Directory and File Organization
There are two subfolders in the main Amazon FreeRTOS directory:

• demos

Contains example code that can be run on an Amazon FreeRTOS device to demonstrate Amazon
FreeRTOS functionality. There is one subdirectory for each target platform selected. These
subdirectories contain code used by the demos, but not all demos can be run independently. If you use
the Amazon FreeRTOS console, only the target platform you choose has a subdirectory under demos.

The function DEMO_RUNNER_RunDemos() located in AmazonFreeRTOS\demos\common
\demo_runner\aws_demo_runner.c contains code that calls each example. By default, only the
vStartMQTTEchoDemo() function is called. Depending on the configuration you selected when
you downloaded the code, or whether you obtained the code from Github, the other example runner
functions are either commented out or omitted entirely. Although you can change the selection
of demos here, be aware that not all combinations of examples work together. Depending on the
combination, the software might not be able to be executed on the selected target due to memory
constraints. All of the examples that can be executed by Amazon FreeRTOS appear in the common
directory under demos.

• lib

The lib directory contains the source code of the Amazon FreeRTOS libraries. These libraries are
available to you as part of Amazon FreeRTOS:

• MQTT

• Device shadow

• Greengrass

• Wi-Fi

There are helper functions that assist in implementing the library functionality. We do not recommend
that you change these helper functions. If you need to change one of these libraries, make sure it
conforms to the library interface defined in the libs/include directory.

29

https://console.aws.amazon.com/freertos

Amazon FreeRTOS User Guide
Configuration Files

Configuration Files
The demos have been configured to get you started quickly. You might want to change some of the
configurations for your project to create a version that runs on your platform. You can find configuration
files at AmazonFreeRTOS/<vendor>/<platform>/common/config_files.

The configuration files include:

aws_bufferpool.h

Configures the size and quantity of static buffers available for use by the application.
aws_clientcredential_keys.h

Configures your device certificate and private key.
aws_demo_config.h

Configures the task parameters used in the demos: stack size, priorities, and so on.
aws_ggd_config.h

Configures the parameters used to configure a Greengrass core, such as network interface IDs.
aws_mqtt_agent_config.h

Configures the parameters related to MQTT operations, such as task priorities, MQTT brokers, and
keep-alive counts.

aws_mqtt_library.h

Configures MQTT library parameters, such as the subscription length and the maximum number of
subscriptions.

aws_secure_sockets_config.h

Configures the timeouts and the byte ordering when using Secure Sockets.
aws_shadow_configure.h

Configures the parameters used for an AWS IoT shadow, such as the number of JSMN tokens used
when parsing a JSON file received from a shadow.

aws_clientcredential.h

Configures parameters, including the Wi-Fi (SSID, password, and security type), the MQTT broker
endpoint, and IoT thing name.

FreeRTOSConfig.h

Configures the FreeRTOS kernel for multitasking operations.

Device Shadow Demo Application
The device shadow example demonstrates how to programmatically update and respond to changes in
a device shadow. The device in this scenario is a light bulb whose color can be set to red or green. The
device shadow example app is located in the AmazonFreeRTOS/demos/common/shadow directory. This
example creates three tasks:

• A main demo task that calls prvShadowMainTask.
• A device update task that calls prvUpdateTask.
• A number of shadow update tasks that call prvShadowUpdateTasks.

30

Amazon FreeRTOS User Guide
Device Shadow Demo Application

prvShadowMainTask initializes the device shadow client and initiates an MQTT connection to AWS
IoT. It then creates the device update task. Finally, it creates shadow update tasks and then terminates.
The democonfigSHADOW_DEMO_NUM_TASKS constant defined in AmazonFreeRTOS/demos/common/
shadow/aws_shadow_lightbulb_on_off.c controls the number of shadow update tasks created.

prvShadowUpdateTasks generates an initial thing shadow document and updates the device shadow
with the document. It then goes into an infinite loop that periodically updates the thing shadow's desired
state, requesting the light bulb change its color (from red to green to red).

prvUpdateTask responds to changes in the device shadow's desired state. When the desired state
changes, this task updates the reported state of the device shadow to reflect the new desired state.

1. Add the following policy to your device certificate:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:Connect",
 "Resource": "arn:aws:iot:us-west-2:123456789012:client/<yourClientId>"
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": "arn:aws:iot:us-west-2:123456789012:topicfilter/$aws/things/
thingName/shadow/*"
 },
 {
 "Effect": "Allow",
 "Action": "iot:Receive",
 "Resource":
 "arn:aws:iot:us-west-2:123456789012:topic/$aws/things/thingName/shadow/*"
 },
 {
 "Effect": "Allow",
 "Action": "iot:Publish",
 "Resource":
 "arn:aws:iot:us-west-2:123456789012:topic/$aws/things/thingName/shadow/*"
 }
]
}

2. Uncomment the declaration of and call to vStartShadowDemoTasks in aws_demo_runner.c.
This function creates a task that runs the prvShadowMainTask function.

You can use the AWS IoT console to view your device's shadow and confirm that its desired and reported
states change periodically.

1. In the AWS IoT console, from the left navigation pane, choose Manage.

2. Under Manage, choose Things, and then choose the thing whose shadow you want to view.

3. On the thing detail page, from the left navigation pane, choose Shadow to display the thing shadow.

For more information about how devices and shadows interact, see Device Shadow Data Flow.

31

http://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-data-flow.html

Amazon FreeRTOS User Guide
Greengrass Discovery Demo Application

Greengrass Discovery Demo Application
Before you run the FreeRTOS Greengrass discovery demo, you must create a Greengrass group and then
add a Greengrass core. For more information, see Getting Started with AWS Greengrass.

After you have a core running the Greengrass software, create an AWS IoT thing, certificate, and policy
for your Amazon FreeRTOS device. For more information, see Registering Your MCU Board with AWS
IoT (p. 5).

After you have created an IoT thing for your Amazon FreeRTOS device, follow the instructions to set up
your environment and build Amazon FreeRTOS on one of the supported devices:

Note
Use the Registering Your MCU Board with AWS IoT (p. 5) instructions, but instead of
downloading one of the predefined Connect to AWS IoT- XX configurations (where XX is
TI, ST, NXP, Microchip, or Windows), download one of the Connect to AWS Greengrass - XX
configurations (where XX is TI, ST, NXP, Microchip, or Windows). Follow the steps in "Configure
Your Project." Return to this topic after you have built Amazon FreeRTOS for your device.

• Getting Started with the Texas Instruments CC3220SF-LAUNCHXL (p. 7)
• Getting Started with the STMicroelectronics STM32L4 Discovery Kit IoT Node (p. 12)
• Getting Started with the NXP LPC54018 IoT Module (p. 15)
• Getting Started with the Microchip Curiosity PIC32MZEF (p. 19)
• Getting Started with the FreeRTOS Windows Simulator (p. 25)

At this point, you have downloaded the Amazon FreeRTOS software, imported it into your IDE, and built
the project without errors. The project is already configured to run the Greengrass Connectivity demo.
In the AWS IoT console, choose Test, and then add a subscription to freertos/demos/ggd. The demo
publishes a series of messages to the Greengrass core. The messages are also published to AWS IoT,
where they are received by the AWS IoT MQTT client.

In the MQTT client, you should see the following strings:

Message from Thing to Greengrass Core: Hello world msg #1!
Message from Thing to Greengrass Core: Hello world msg #0!
Message from Thing to Greengrass Core: Address of Greengrass Core
 found! <123456789012>.<us-west-2>.compute.amazonaws.com

OTA Demo Application
Amazon FreeRTOS includes a demo application that demonstrates the use of the OTA library. The OTA
demo application is located in the demos\common\ota subdirectory.

This section walks you through using the OTA demo application to perform an over-the-air (OTA) update.

Before you create an OTA update, complete the Getting Started with Amazon FreeRTOS (p. 4) tutorial to
make sure you can connect your device to AWS IoT.

The OTA demo application:

1. Initializes the FreeRTOS network stack and MQTT buffer pool. (See main.c.)
2. Creates a task to exercise the OTA library. (See vOTAUpdateDemoTask in aws_ota_update_demo.c.)
3. Creates an MQTT client using MQTT_AGENT_Create.
4. Connects to the AWS IoT MQTT broker using MQTT_AGENT_Connect.

32

http://docs.aws.amazon.com/greengrass/latest/developerguide/gg-gs.html

Amazon FreeRTOS User Guide
OTA Update Prerequisites

5. Calls OTA_AgentInit to create the OTA task and registers a callback to be used when the OTA task is
complete.

OTA Update Prerequisites
Create an Amazon S3 Bucket to Store a Firmware Image
Firmware updates are stored in Amazon S3 buckets.

To create an Amazon S3 bucket

1. Go to the https://console.aws.amazon.com/s3/.
2. Choose Create bucket.
3. Type a bucket name, and then choose Next.
4. On the Create bucket page, choose Versioning.
5. Choose Enable versioning, and then choose Save.
6. Choose Next.
7. Choose Next to accept the default permissions.
8. Choose Create bucket.

Grant OTA Update Permissions to Your AWS User Account
To perform OTA updates, you must define:

• An OTA service role.

The OTA Update service assumes this role to create and manage OTA update jobs on your behalf.
• An OTA user policy.

This policy grants your IAM user access to a number of services required for OTA updates.
• A code signing policy.

The code signing policy grants your IAM user access to the Code Signing for Amazon FreeRTOS service.

Creating an OTA Update Service Role

To create an OTA service role

1. Sign in to the https://console.aws.amazon.com/iam/.
2. From the navigation pane, choose Roles.
3. Choose the Create role button.
4. Under Select type of trusted entity, choose AWS Service.
5. Choose IoT from the list of AWS services.
6. Choose Next: Permissions.
7. Choose Next: Review.
8. Type a role name and description, and then choose Create role.

To add OTA update permissions to your OTA service role

1. In the search box on the IAM console page, type your role's name and then choose it from the list.

33

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/

Amazon FreeRTOS User Guide
OTA Update Prerequisites

2. Choose the Attach policy button.
3. In the Search box, type AWSIoTOTAUpdate, choose it in the list of managed policies, and then

choose the Attach policy button.

To add Amazon S3 permissions to your OTA service role

1. In the search box on the IAM console page, type your role's name and then choose it from the list.
2. In the lower right, choose Add inline policy.
3. Choose the JSON tab.
4. Copy and paste the following policy document into the text box. Replace <example-bucket> with

the name of your bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObjectVersion",
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::<example-bucket>/*"
 }
]
}

5. Choose Review policy.
6. Type a name for the policy and choose Create policy.

Creating an OTA User Policy

You must grant your IAM user permission to perform over-the-air updates. Your IAM user must have
permissions to:

• Access the S3 bucket where your firmware updates are stored.
• Access certificates stored in AWS Certificate Manager.
• Access the Amazon streaming service.
• Access the Amazon FreeRTOS OTA Update service.
• Access the AWS IoT Jobs service.
• Access IAM.
• Access the Code Signing for Amazon FreeRTOS service.

Grant your IAM user the required permissions by creating an OTA user policy and attaching it to your IAM
user.

To create an OTA user policy

1. Open the https://console.aws.amazon.com/iam/ console.
2. In the navigation pane, choose Users.
3. Choose your IAM user from the list.
4. Choose Add permissions.
5. Choose Attach existing policies directly.
6. Choose the Create policy button.

34

https://console.aws.amazon.com/iam/

Amazon FreeRTOS User Guide
OTA Update Prerequisites

7. On the JSON tab, copy and paste the following policy document into the policy editor:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListBucket",
 "s3:ListAllMyBuckets",
 "s3:CreateBucket",
 "s3:PutBucketVersioning",
 "s3:GetBucketLocation",
 "s3:GetObjectVersion",
 "acm:ImportCertificate",
 "acm:ListCertificates",
 "iot:ListThings",
 "iot:ListThingGroups",
 "iot:CreateStream",
 "iot:CreateOTAUpdate",
 "iot:GetOTAUpdate",
 "iot:ListJobs",
 "iot:ListJobExecutionsForJob",
 "iot:DescribeJob",
 "iot:GetJobDocument",
 "iam:ListRoles",
 "signer:ListSigningJobs",
 "signer:StartSigningJob",
 "signer:DescribeSigningJob"
],
 "Resource":"*"
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource":"arn:aws:s3:::<example-bucket>/*"
 },
 {
 "Effect":"Allow",
 "Action":"iam:PassRole",
 "Resource":"arn:aws:iam::<your-account-id>:role/<role-name>"
 }
]
}

Replace <example-bucket> with the name of the Amazon S3 bucket where you store your OTA
update firmware image. Replace <your-account-id> with your AWS account ID. You can find your
AWS account ID in the upper-right corner of the console. When you enter your account ID, remove
any dashes (-). Replace <role-name> with the name of the IAM service role you just created.

8. Choose the Review policy button.

9. Type a name for your new OTA user policy, and then choose the Create policy button.

To attach the OTA user policy to your IAM user

1. In the IAM console, on the navigation pane, choose Users, and then choose your user.

2. Choose Add permissions.

3. Choose Attach existing policies directly.

35

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the TI CC3200SF-LAUNCHXL

4. Search for the OTA user policy you just created and select the check box next to it.
5. Choose the Next: Review button.
6. Choose the Add permissions button.

Granting Access to the Code Signing Service

In production environments, you should digitally sign your firmware update to ensure the authenticity
and integrity of the update. You can sign your update manually or use the Code Signing for Amazon
FreeRTOS service in the AWS IoT console to sign your code. To sign your code automatically, you must
grant your AWS account access to the Code Signing for Amazon FreeRTOS service.

To grant your AWS account access to Code Signing for Amazon FreeRTOS

1. Sign in to the https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Policies.
3. Choose Create Policy.
4. On the JSON tab, copy and paste the following JSON document into the policy editor. This policy

allows the IAM user access to all code signing operations.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "signer:*"
],
 "Resource": [
 "*"
]
 }
]
}

5. Choose Review policy.
6. Type a policy name and description, and then choose Create policy.
7. In the navigation pane, choose Users.
8. Choose your IAM user account.
9. On the Permissions tab, choose Add permissions.
10. Choose Attach existing policies directly, and then select the check box next to the code signing

policy you just created.
11. Choose Next: Review.
12. Choose Add permissions.

Command Line Tools
Make sure you have the most recent versions of openssl and the AWS CLI installed.

Using the OTA Update Demo Application on the TI
CC3200SF-LAUNCHXL
This section will walk you through using the OTA Update demo application on the Texas Instruments
CC3220SF-LAUNCHXL. You will create a code-signing certificate, install an initial version of the demo

36

https://console.aws.amazon.com/iam/
https://www.openssl.org/
https://aws.amazon.com/cli/

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the TI CC3200SF-LAUNCHXL

application (firmware), update the version of the firmware, upload the new version of the firmware
and then create an OTA update job that will perform the over the air update on your Texas Instruments
CC3220SF-LAUNCHXL.

Create a Code-Signing Certificate and Private Key
To digitally sign firmware images, you need a code-signing certificate and private key. For testing
purposes, you can create a self‐signed certificate and private key. For production environments, purchase
a certificate through a well‐known certificate authority (CA).

Creating Code-Signing Certificates for Texas Instruments CC3220SF-LAUNCHXL

The SimpleLink Wi-Fi CC3220SF Wireless Microcontroller Launchpad Development Kit supports two
certificate chains for firmware code signing:

• Production (certificate-catalog)

To use the production certificate chain, you must purchase a commercial code-signing certificate and
use the TI Uniflash tool to set the board to production mode.

• Testing and development (certificate-playground)

The playground certificate chain allows you to try out OTA updates with a self‐signed code-signing
certificate.

Install the SimpleLink CC3220 SDK version 1.40.01.00. By default, the files you need are located here:

C:\ti\simplelink_cc32xx_sdk_1_40_01_00\tools\cc32xx_tools\certificate-
playground (Windows)

/Applications/Ti/simplelink_cc32xx_sdk_1_40_01_00/tools/cc32xx_tools/
certificate-playground (macOS)

The certificates in the SimpleLink CC3220 SDK are in DER format. You need to convert them to PEM
format to create a self‐signed code-signing certificate.

Follow these steps to create a code-signing certificate that is linked to the Texas Instruments playground
certificate hierarchy and meets AWS Certificate Manager and Code Signing for Amazon FreeRTOS
criteria.

To create a self‐signed code signing certificate

1. In your working directory, use the following text to create a file named cert_config. Replace
test_signer@amazon.com with your email address.

[req]
prompt = no
distinguished_name = my dn

[my dn]
commonName = test_signer@amazon.com

[my_exts]
keyUsage = digitalSignature
extendedKeyUsage = codeSigning

2. Create a private key and certificate signing request (CSR):

openssl req -config cert_config -extensions my_exts -nodes -days 365 -newkey rsa:2048 -
keyout tisigner.key -out tisigner.csr

37

http://www.ti.com/tool/UNIFLASH
http://www.ti.com/tool/download/SIMPLELINK-CC3220-SDK/1.40.01.00

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the TI CC3200SF-LAUNCHXL

3. Convert the Texas Instruments playground root CA private key from DER format to PEM format.

The TI playground root CA private key is located here:

C:\ti\simplelink_cc32xx_sdk_1_40_01_00\tools\cc32xx_tools\certificate-
playground\dummy-root-ca-cert-key (Windows)

/Applications/Ti/simplelink_cc32xx_sdk_1_40_01_00/tools/cc32xx_tools/
certificate-playground/dummy-root-ca-cert-key (macOS)

openssl rsa -inform DER -in dummy-root-ca-cert-key -out dummy-root-ca-cert-key.pem

4. Convert the Texas Instruments playground root CA certificate from DER format to PEM format.

The TI playground root certificate is located here:

C:\ti\simplelink_cc32xx_sdk_1_40_01_00\tools\cc32xx_tools\certificate-
playground/dummy-root-ca-cert (Windows)

/Applications/Ti/simplelink_cc32xx_sdk_1_40_01_00/tools/cc32xx_tools/
certificate-playground/dummy-root-ca-cert (macOS)

openssl x509 -inform DER -in dummy-root-ca-cert -out dummy-root-ca-cert.pem

5. Sign the CSR with the Texas Instruments root CA:

openssl x509 -extfile cert_config -extensions my_exts -req -days 365 -in tisigner.csr
 -CA dummy-root-ca-cert.pem -CAkey dummy-root-ca-cert-key.pem -set_serial 01 -out
 tisigner.crt.pem -sha1

6. Convert your code-signing certificate (tisigner.crt.pem) to DER format:

openssl x509 -in tisigner.crt.pem -out tisigner.crt.der -outform DER

Note
You write the tisigner.crt.der certificate onto the TI development board later.

7. Import the code-signing certificate, private key, and certificate chain into AWS Certificate Manager:

aws acm import-certificate --certificate file://tisigner.crt.pem --private-key file://
tisigner.key --certificate-chain file://dummy-root-ca-cert.pem

This command displays an ARN for your certificate. You need this ARN when you create an OTA
update job.

Note
This step assumes you are going to use the Code Signing for Amazon FreeRTOS service to
sign your firmware images. Although the use of the service is recommended, you can sign
your firmware images manually.

Installing the Initial Firmware

To update firmware, you must install an initial version of the firmware that uses the OTA agent library to
listen for OTA update jobs. In these steps, we use the OTA demo application for both the initial firmware
and the firmware update.

38

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the TI CC3200SF-LAUNCHXL

To download Amazon FreeRTOS and the OTA demo code

1. Browse to the AWS IoT console and from the navigation pane, choose Software.

2. Under Amazon FreeRTOS Device Software, choose Configure download.

3. From the list of software configurations, choose Connect to AWS IoT - TI. Choose the configuration
name, not the Download link.

Note
The OTA Updates feature is currently in beta.

4. Under Libraries, choose Add another library, and then choose OTA Updates.

5. Under Name required, type Connect-to-IoT-OTA-TI, and then choose Create and download.

To build the demo application

1. Extract the .zip file.

2. Follow the instructions in Getting Started with Amazon FreeRTOS (p. 4), import the aws_demos
project into Code Composer Studio, configure your AWS IoT endpoint, your Wi-Fi SSID and
password, and a private key and certificate for your board.

3. Open aws_demos/application_code/source/aws_demo_runner.c and comment out
the call to vStartMQTTEchoDemo() and its extern declaration. Uncomment the call to
vStartOTAUpdateDemoTask() and its extern declaration.

4. Build the project and make sure it compiles without errors.

5. Run a terminal emulator and connect to your board using the following settings:

• Baud rate: 115200

• Data bits: 8

• Parity: None

• Stop bits: 1

6. Run the project on your board to make sure it can connect to Wi-Fi and the AWS IoT MQTT message
broker.

The terminal emulator should display text like the following:

Device came up in Station mode

 Device disconnected from the AP on an ERROR..!!

 [WLAN EVENT] STA Connected to the AP: Guest , BSSID:
 <00:00:aa:bb:cc:dd>

 [NETAPP EVENT] IP acquired by the device

 Device has connected to <SSID>

 Device IP Address is <ip-address>

 6 2514 [OTA] OTA demo version 0.9.0
 7 2514 [OTA] Creating MQTT Client...
 8 2514 [OTA] Connecting to broker...
 9 2514 [OTA] Sending command to MQTT task.
 10 2514 [MQTT] Received message 10000 from queue.

39

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the TI CC3200SF-LAUNCHXL

To burn the demo application onto your board

1. On your Texas Instruments developer board, place the SOP jumper on the middle set of pins
(position = 1) and reset the board.

2. Download and install the TI Uniflash tool.

3. Start Uniflash and from the list of configurations, choose CC3220SF-LAUNCHXL, and then choose
Start Image Creator.

4. Choose New Project.

5. On the Start new project page, type a name for your project. Set Device Type to CC3220SF, set
Device Mode to Develop, and then choose Create Project.

6. Disconnect your terminal emulator and choose the Connect button on the right side of the Uniflash
application window.

7. On the left, under Files, choose User Files.

8.
In the File selector pane, choose the Add File icon .

9. Browse to the /Applications/Ti/simplelink_cc32xx_sdk_1_40_01_00/tools/
cc32xx_tools/certificate-playground directory, select dummy-root-ca-cert, choose
Open, and then choose Write.

10. Browse to the working directory where you created the code-signing certificate and private key,
choose tisigner.crt.der, choose Open, and then choose Write.

11. From the Action drop-down list, choose Select MCU Image, and then choose Browse to choose
the firmware image to use write to your device (aws_demos.bin). This file is located in the
AmazonFreeRTOS/demos/ti/cc3200_launchpad/ccs/Debug directory. Choose Open.

12. In the file dialog box, confirm the file name is set to mcuflashimg.bin. Select the Vendor check
box. Under File Token, type 1952007250. Under Private Key File Name, choose Browse and then
choose tisignerkey from the working directory where you created the code-signing certificate
and private key. Under Certification File Name, choose tisigner.crt.der, and then choose
Write.

13. In the left pane, under Files, select Trusted Root-Certificate Catalog.

14. Clear the Use default Trusted Root-Certificate Catalog check box.

15. Under Source File, choose Browse, select simplelink_cc32xx_sdk_1_40_01_00/tools/certificate-
playground\certcatalogPlayGround20160911.lst, and then choose Open.

16. Under Signature Source File, choose Browse, select simplelink_cc32xx_sdk_1_40_01_00/tools/
certificate-playground\certcatalogPlayGround20160911.lst.signed.bin, and then choose Open.

17.

Choose the button to save your project.

18.

Choose the button.

19. Choose Program Image (Create and Program).
20. After programming process is complete, place the SOP jumper onto the first set of pins (position =

0), reset the board, and reconnect your terminal emulator to make sure the output is the same as
when you debugged the demo with Code Composer Studio.

Creating a Firmware Update
Now you can create an updated firmware image to install using the OTA Update service. In these steps,
we just update the firmware version of the OTA demo application. Because the OTA demo displays

40

http://www.ti.com/tool/UNIFLASH

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the TI CC3200SF-LAUNCHXL

the version of the firmware on device reset, we can use the displayed version to verify the update was
successful.

To create an updated version of the firmware

1. Open the aws_demos project in Code Composer Studio.

2. Open aws_demos/application_code/common_demos/include/
aws_application_version.h and set APP_VERSION_BUILD to 1.

3. Rebuild the aws_demos project.

Uploading Updated Firmware
The Amazon FreeRTOS OTA Update service loads your updated firmware from an Amazon S3 bucket.

To upload your firmware image to an Amazon S3 bucket

1. Go to the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. In Search for buckets, type your bucket name, and then choose it from the list. If you haven't
created a bucket, see Create an Amazon S3 Bucket to Store a Firmware Image (p. 33).

3. Choose Upload.

4. Choose Add files, choose the firmware image you want to upload, and then choose Next.

5. Choose Next, and then choose Next again.

6. Choose Upload.

Create an OTA Update Job
1. In the navigation pane of the AWS IoT console, choose Manage, and then choose Jobs.

2. Choose Create.

3. Under Create an Amazon FreeRTOS Over-the-Air (OTA_) update job, choose Create OTA update
job.

4. Under Select devices to update, choose Select, and then choose the Things tab in the device list.

5. Select the check box next to the IoT thing associated with your CC3220SF-LAUNCHXL board.

6. Under Select and sign your firmware image, choose Sign a new firmware image for me.

7. Under Pathname of code signing certificate on device, type tisigner.crt.der

8. Make sure Pathname of firmware image on device is set to /sys/mcuflashimg.bin and Device
hardware platform is set to CC3220SF-LAUNCHXL.

9. Under Select your firmware image in S3, choose Select, and then choose the aws_demos.bin image
that contains your updated image.

10. Under Code signing certificate, choose Select, and then choose your code-signing certificate.
Code-signing certificates are listed by ARN. The ARN for your certificate was displayed when you
registered it with ACM.

11. Under Job type, choose Your job will complete after deploying to the selected devices/groups
(snapshot).

12. Under IAM role for OTA update job, choose your OTA service role.

13. Type an alphanumeric ID for your job.

14. Choose Create.

The job appears with a status of IN PROGRESS in the AWS IoT console window.

41

https://console.aws.amazon.com/s3/

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the TI CC3200SF-LAUNCHXL

Note
The AWS IoT console does not update the state of jobs automatically. Refresh your browser to
see updates.

Connect your serial UART terminal to your CC3220SF-LAUNCHXL. You should see output that indicates
the device is downloading the updated firmware:

678 603530 [OTA] [OTA] Queued: 2 Processed: 2 Dropped: 0
 679 603959 [OTA Task] [OTA] Set job doc parameter [jobId:
 89cb1be6_e6fa_4260_99cc_54569d9e87dd]
 680 603960 [OTA Task] [OTA] Set job doc parameter [streamname: 353c253f-5a06-43b2-99d6-
f6041a266db8]
 681 603960 [OTA Task] [OTA] Set job doc parameter [filepath: /sys/mcuflashimg.bin]
 682 603960 [OTA Task] [OTA] Set job doc parameter [filesize: 129132]
 683 603961 [OTA Task] [OTA] Set job doc parameter [fileid: 0]
 684 603961 [OTA Task] [OTA] Set job doc parameter [attr: 0]
 685 603961 [OTA Task] [OTA] Set job doc parameter [certfile: tisigner.crt.der]
 686 603963 [OTA Task] [OTA] Set job doc parameter [sig-sha1-rsa: bf/
ET94tx3PULTzI4VNFxdSDapeK65dn]
 687 603963 [OTA Task] [OTA] Job was accepted. Attempting to start transfer.
 688 603963 [OTA Task] Sending command to MQTT task.
 689 603963 [MQTT] Received message 80000 from queue.
 690 604065 [MQTT] MQTT Subscribe was accepted. Subscribed.
 691 604065 [MQTT] Notifying task.
 692 604066 [OTA Task] Command sent to MQTT task passed.
 693 604066 [OTA Task] [OTA] Subscribed to topic: $aws/things/TI_CCS3200SF/
streams/353c253f-5a06-43b2-99d6-f6041a266db8

 694 604530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 695 605530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 696 606530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 697 607530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 698 608530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 699 609530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 700 610530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 701 611530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 702 611776 [OTA Task] [OTA] file token: 74594452
 703 612530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 704 613530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 705 614530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 706 615530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 707 616530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 708 617530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 709 618530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 710 619530 [OTA] [OTA] Queued: 1 Processed: 0 Dropped: 0
 711 620047 [OTA Task] [OTA] file ready for access.
 712 620047 [OTA Task] [OTA] Returned buffer to MQTT Client.
 713 620048 [OTA Task] Sending command to MQTT task.
 714 620048 [MQTT] Received message 90000 from queue.
 715 620048 [MQTT] Notifying task.
 716 620049 [OTA Task] Command sent to MQTT task passed.
 717 620049 [OTA Task] [OTA] Published file request to $aws/bin/things/TI_CCS3200SF/
streams/353c253f-5a06-43b2-99d6-f6041a266db8718 620530 [OTA] [OTA] Queued: 3 Processed: 3
 Dropped: 0
 719 620653 [OTA Task] [OTA] Received file block 0, size 1024
 720 620667 [OTA Task] [OTA] Remaining: 126
 721 620668 [OTA Task] [OTA] Returned buffer to MQTT Client.
 722 620669 [OTA Task] [OTA] Received file block 1, size 1024
 723 620697 [OTA Task] [OTA] Remaining: 125
 ...

After the device downloads the updated firmware, it restarts and then installs the firmware. You can see
what's happening in the UART terminal:

42

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the Microchip Curiosity PIC32MZEF

1285 756833 [OTA Task] [OTA] Resetting MCU to activate new image.
 0 0 [Tmr Svc] Simple Link task created

 Device came up in Station mode

 1 89 [Tmr Svc] Starting key provisioning...
 2 89 [Tmr Svc] Write root certificate...
 3 190 [Tmr Svc] Write device private key...
 4 290 [Tmr Svc] Write device certificate...
 SL Disconnect...

 5 387 [Tmr Svc] Key provisioning done...
 Device came up in Station mode

 [WLAN EVENT] STA Connected to the AP: Guest , BSSID: 44:48:c1:ba:b2:c3

 [NETAPP EVENT] IP acquired by the device

 Device has connected to Guest

 Device IP Address is 192.168.14.217

 6 2440 [OTA] OTA demo version 0.9.3
 7 2440 [OTA] Creating MQTT Client...
 8 2440 [OTA] Connecting to broker...
 9 2440 [OTA] Sending command to MQTT task.
 10 2440 [MQTT] Received message 10000 from queue.
 ...

Using the OTA Update Demo Application on the
Microchip Curiosity PIC32MZEF
This section will walk you through using the OTA Update demo application on the Microchip Curiosity
PIC32MZEF. You will create a code-signing certificate, install an initial version of the demo application
(firmware), update the version of the firmware, upload the new version of the firmware and then create
an OTA update job that will perform the over the air update on your Microchip Curiosity PIC32MZEF.

Creating Code-Signing Certificates

The Microchip Curiosity PIC32MZEF supports a self-signed SHA256 with ECDSA code-signing certificate.

1. In your working directory use the following text to create a file named cert_config. Replace
test_signer@amazon.com with your email address:

[req]
prompt = no
distinguished_name = my_dn

[my_dn]
commonName = test_signer@amazon.com

[my_exts]
keyUsage = digitalSignature
extendedKeyUsage = codeSigning

2. Create an ECDSA code-signing private key:

43

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the Microchip Curiosity PIC32MZEF

openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -pkeyopt
 ec_param_enc:named_curve -outform PEM -out ecdsasigner.key

3. Create an ECDSA code-signing certificate:

openssl req -new -x509 -config cert_config -extensions my_exts -nodes -days 365 -key
 ecdsasigner.key -out ecdsasigner.crt

4. Import the code-signing certificates to the AWS Certificate Manager:

aws acm import-certificate --certificate file://ecdsasigner.crt --private-key file://
ecdsasigner.key

This command displays an ARN for your certificate. You need this ARN when you create an OTA
update job. For example:

{
 "CertificateArn": "arn:aws:acm:us-
west-2:123123123123:certificate/23312627-963b-4798-888b-09e89071a861"
}

You will need to specify this ARN when you create an OTA update job in the AWS IoT console.

Installing the Initial Firmware
To update firmware, you must install an initial version of the firmware that uses the OTA agent library to
listen for OTA update jobs. The OTA demo application contains the code for the initial firmware and the
code to listen for firmware updates.

This tutorial assumes you have followed the instructions in:

1. Prerequisites (p. 4)
2. Setting Up the Microchip Curiosity PIC32MZEF Hardware (p. 20)
3. Setting Up Your Environment (p. 21)

To download the Amazon FreeRTOS OTA demo code

1. Browse to the AWS IoT console and from the navigation pane, choose Software.
2. Under Amazon FreeRTOS Device Software, choose Configure download.
3. From the list of software configurations, choose Connect to AWS IoT - Microchip. Choose the

configuration name, not the Download link.

Note
The OTA Updates feature is currently in beta.

4. Under Libraries, choose Add another library, and then choose OTA Updates.
5. Under Demo projects choose OTA Update.
6. Under Name required type a name for your custom Amazon FreeRTOS software configuration.
7. Choose Create and download.

To build the OTA update demo application

1. Extract the .zip file you just downloaded.

44

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the Microchip Curiosity PIC32MZEF

2. Follow the instructions in Getting Started with Amazon FreeRTOS (p. 4) to import the aws_demos
project into the MPLAB X IDE, configure your AWS IoT endpoint, your Wi-Fi SSID and password, and
a private key and certificate for your board.

3. Build the project and make sure it compiles without errors.

4. Start a terminal emulator and connect to your board using the following settings:

• Baud rate: 115200

• Data bits: 8

• Parity: None

• Stop bits: 1

5. Run the project on your board to make sure it can connect to Wi-Fi and the AWS IoT MQTT message
broker.

When you run the project, the MPLAB X IDE should open an output window. Make sure the ICD4 tab is
selected and you should see the following output.

Connecting to MPLAB ICD 4...

Currently loaded versions:
Application version............01.02.16
Boot version...................01.00.00
FPGA version...................01.00.00
Script version.................00.02.18
Script build number............fd44437f19
Application build number.......0123456789

Target voltage detected
Target device PIC32MZ2048EFM100 found.
Device Id Revision = 0xA1
Serial Number:
Num0 = ec4f6d3c
Num1 = 6b845410

Erasing...

The following memory area(s) will be programmed:
program memory: start address = 0x1d000000, end address = 0x1d08f7ff
configuration memory
boot config memory

Programming/Verify complete

Running

The terminal emulator should display text like the following:

AWS Validate: no valid signature in descr: 0xbd000000
AWS Validate: no valid signature in descr: 0xbd100000

>AWS Launch: No Map performed. Running directly from address: 0x9d000020?
AWS Launch: wait for app at: 0x9d000020
WILC1000: Initializing...
0 0

45

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the Microchip Curiosity PIC32MZEF

>[None] Seed for randomizer: 1172751941
1 0 [None] Random numbers: 00004272 00003B34 00000602 00002DE3
Chip ID 1503a0

[spi_cmd_rsp][356][nmi spi]: Failed cmd response read, bus error...

[spi_read_reg][1086][nmi spi]: Failed cmd response, read reg (0000108c)...

[spi_read_reg][1116]Reset and retry 10 108c

Firmware ver. : 4.2.1

Min driver ver : 4.2.1

Curr driver ver: 4.2.1

WILC1000: Initialization successful!

Start Wi-Fi Connection...
Wi-Fi Connected
2 7219 [IP-task] vDHCPProcess: offer c0a804beip
3 7230 [IP-task] vDHCPProcess: offer c0a804beip
4 7230 [IP-task]

IP Address: 192.168.4.190
5 7230 [IP-task] Subnet Mask: 255.255.240.0
6 7230 [IP-task] Gateway Address: 192.168.0.1
7 7230 [IP-task] DNS Server Address: 208.67.222.222

8 7232 [OTA] OTA demo version 0.9.0
9 7232 [OTA] Creating MQTT Client...
10 7232 [OTA] Connecting to broker...
11 7232 [OTA] Sending command to MQTT task.
12 7232 [MQTT] Received message 10000 from queue.
13 8501 [IP-task] Socket sending wakeup to MQTT task.
14 10207 [MQTT] Received message 0 from queue.
15 10256 [IP-task] Socket sending wakeup to MQTT task.
16 10256 [MQTT] Received message 0 from queue.
17 10256 [MQTT] MQTT Connect was accepted. Connection established.
18 10256 [MQTT] Notifying task.
19 10257 [OTA] Command sent to MQTT task passed.
20 10257 [OTA] Connected to broker.
21 10258 [OTA Task] Sending command to MQTT task.
22 10258 [MQTT] Received message 20000 from queue.
23 10306 [IP-task] Socket sending wakeup to MQTT task.
24 10306 [MQTT] Received message 0 from queue.
25 10306 [MQTT] MQTT Subscribe was accepted. Subscribed.
26 10306 [MQTT] Notifying task.
27 10307 [OTA Task] Command sent to MQTT task passed.
28 10307 [OTA Task] [OTA] Subscribed to topic: $aws/things/Microchip/jobs/$next/get/
accepted

29 10307 [OTA Task] Sending command to MQTT task.
30 10307 [MQTT] Received message 30000 from queue.
31 10336 [IP-task] Socket sending wakeup to MQTT task.
32 10336 [MQTT] Received message 0 from queue.
33 10336 [MQTT] MQTT Subscribe was accepted. Subscribed.
34 10336 [MQTT] Notifying task.
35 10336 [OTA Task] Command sent to MQTT task passed.
36 10336 [OTA Task] [OTA] Subscribed to topic: $aws/things/Microchip/jobs/notify-next

37 10336 [OTA Task] [OTA] Check For Update #0
38 10336 [OTA Task] Sending command to MQTT task.
39 10336 [MQTT] Received message 40000 from queue.
40 10366 [IP-task] Socket sending wakeup to MQTT task.

46

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the Microchip Curiosity PIC32MZEF

41 10366 [MQTT] Received message 0 from queue.
42 10366 [MQTT] MQTT Publish was successful.
43 10366 [MQTT] Notifying task.
44 10366 [OTA Task] Command sent to MQTT task passed.
45 10376 [IP-task] Socket sending wakeup to MQTT task.
46 10376 [MQTT] Received message 0 from queue.
47 10376 [OTA Task] [OTA] Set job doc parameter [clientToken: 0:Microchip]
48 10376 [OTA Task] [OTA] Missing job parameter: execution
49 10376 [OTA Task] [OTA] Missing job parameter: jobId
50 10376 [OTA Task] [OTA] Missing job parameter: jobDocument
51 10378 [OTA Task] [OTA] Missing job parameter: ts_ota
52 10378 [OTA Task] [OTA] Missing job parameter: files
53 10378 [OTA Task] [OTA] Missing job parameter: streamname
54 10378 [OTA Task] [OTA] Missing job parameter: certfile
55 10378 [OTA Task] [OTA] Missing job parameter: filepath
56 10378 [OTA Task] [OTA] Missing job parameter: filesize
57 10378 [OTA Task] [OTA] Missing job parameter: sig-sha256-ecdsa
58 10378 [OTA Task] [OTA] Missing job parameter: fileid
59 10378 [OTA Task] [OTA] Missing job parameter: attr
60 10378 [OTA Task] [OTA] Returned buffer to MQTT Client.
61 11367 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0
62 12367 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0
63 13367 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0
64 14367 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0
65 15367 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0
66 16367 [OTA] [OTA] Queued: 1 Processed: 1 Dropped: 0

This output shows the Microchip Curiosity PIC32MZEF is able to connect to AWS IoT and subscribe to the
MQTT topics required for OTA Updates. The Missing job parameter messages are expected because
there are no OTA update jobs pending.

To burn the demo application onto your board

1. Open aws_demos/lib/aws/ota/aws_codesign_keys.h.

2. Paste the contents of "ecdsasigner.crt" created earlier into the static const char
signingcredentialSIGNING_CERTIFICATE_PEM variable. Following the same format as
aws_clientcredential_keys.h, each line must end with the new line character ('\n') and be surrounded
by quotes.

For example, your certificate should look similar to the following:

"-----BEGIN CERTIFICATE-----\n"
"MIIBXTCCAQOgAwIBAgIJAM4DeybZcTwKMAoGCCqGSM49BAMCMCExHzAdBgNVBAMM\n"
"FnRlc3Rf62lnbmVyQGFtYXpvbi5jb20wHhcNMTcxMTAzMTkxODM1WhcNMTgxMTAz\n"
"MTkxODM2WjAhMR8wHQYDVQBBZZZ0ZXN0X3NpZ25lckBhbWF6b24uY29tMFkwEwYH\n"
"KoZIzj0CAQYIKoZIzj0DAQcDQgAERavZfvwL1X+E4dIF7dbkVMUn4IrJ1CAsFkc8\n"
"gZxPzn683H40XMKltDZPEwr9ng78w9+QYQg7ygnr2stz8yhh06MkMCIwCwYDVR0P\n"
"BAQDAgeAMBMGA1UdJQQMMAoGCCsGAQUFBwMDMAoGCCqGSM49BAMCA0gAMEUCIF0R\n"
"r5cb7rEUNtWOvGd05MacrgOABfSoVYvBOK9fP63WAqt5h3BaS123coKSGg84twlq\n"
"TkO/pV/xEmyZmZdV+HxV/OM=\n"
"-----END CERTIFICATE-----\n";

3. Paste the contents of "ecdsasigner.key" created earlier into the static const char
signingcredentialSIGNING_PRIVATE_KEY_PEM variable. Following the same format as
aws_clientcredential_keys.h, each line must end with the new line character ('\n') and be surrounded
by quotes.

4. Rebuild the aws_demos project and make sure it compiles without errors.

5.

Click on the from the top tool bar.

47

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the Microchip Curiosity PIC32MZEF

6. After the programming process is complete, disconnect the ICD 4 debugger and reset the board.
Reconnect your terminal emulator to make sure the output is the same as when you debugged the
demo with MPLAB X IDE.

Creating a Firmware Update
Now you can create an updated firmware image to install using the OTA Update service. In these steps,
we just update the firmware version of the OTA demo application. Because the OTA demo displays
the version of the firmware on device reset, we can use the displayed version to verify the update was
successful.

To create an updated version of the firmware

1. Open the aws_demos project in the MPLAB X IDE.

2. Open aws_demos/application_code/common_demos/include/
aws_application_version.h and set APP_VERSION_BUILD to 1.

3. Rebuild the aws_demos project.

Uploading Updated Firmware
The Amazon FreeRTOS OTA Update service loads your updated firmware from an Amazon S3 bucket.

To upload your firmware image to an Amazon S3 bucket

1. Go to the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. In Search for buckets, type your bucket name, and then choose it from the list. If you haven't
created a bucket, see Create an Amazon S3 Bucket to Store a Firmware Image (p. 33).

3. Choose Upload.

4. Choose Add files, choose the firmware image you want to upload. In this case, choose
AmazonFreeRTOS\demos\microchip\curiosity_pic32mzef\mplab\dist
\pic32mz_ef_curiosity\productionmplab.production.bin and then choose Open.

5. Choose Next, and then choose Next again.

6. Choose Upload.

Creating an OTA Update Job
1. In the navigation pane of the AWS IoT console, choose Manage, and then choose Jobs.

2. Choose Create.

3. Under Create an Amazon FreeRTOS Over-the-Air (OTA) update job, choose Create OTA update
job.

4. Under Select devices to update, choose Select, and then choose the Things tab in the device list.

5. Select the check box next to the IoT thing associated with your Microchip Curiosity PIC32MZEF
board.

6. Under Select and sign your firmware image, choose Sign a new firmware image for me.

7. Choose Curiosity PIC32MZEF in the Device hardware platform drop down selection.

8. Under Pathname of firmware image on device, type any alphanumeric dummy string. This field
cannot be blank, but is not used by the Microchip Curiosity PIC32MZEF.

9. Under Pathname of code signing certificate on device, type any alphanumeric dummy string. This
field cannot be blank, but is not used by the Microchip Curiosity PIC32MZEF.

48

https://console.aws.amazon.com/s3/

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the Microchip Curiosity PIC32MZEF

10. Under Select your firmware image in S3, choose Select, and then choose the mplab.production.bin
image that contains your updated image.

11. Under Code signing certificate, choose Select, and then choose your code-signing certificate.
Code-signing certificates are listed by ARN. The ARN for your certificate was displayed when you
registered it with ACM.

12. Under Job type, choose Your job will complete after deploying to the selected devices/groups
(snapshot).

13. Under IAM role for OTA update job, choose your OTA service role.
14. Type an alphanumeric ID for your job.
15. Choose Create.

The job appears with a status of IN PROGRESS in the AWS IoT console window.

Note
The AWS IoT console does not update the state of jobs automatically. Refresh your browser to
see updates.

Connect your serial UART terminal to your Microchip Curiosity PIC32MZEF. You should see output that
indicates the device is downloading the updated firmware:

101 23773 [OTA Task] [OTA] Set job doc parameter [jobId:
 42203c2a_39e7_4651_a791_9aba2a965656]
102 23773 [OTA Task] [OTA] Set job doc parameter [streamname:
 f9d9eff7-51b5-4442-840c-8dfe73366ed9]
103 23773 [OTA Task] [OTA] Set job doc parameter [filepath: dummy]
104 23773 [OTA Task] [OTA] Set job doc parameter [filesize: 588156]
105 23775 [OTA Task] [OTA] Set job doc parameter [fileid: 0]
106 23775 [OTA Task] [OTA] Set job doc parameter [attr: 0]
107 23775 [OTA Task] [OTA] Set job doc parameter [certfile: dummy]
108 23775 [OTA Task] [OTA] Set job doc parameter [sig-sha256-ecdsa: MEUCIBvcJ50rrQGdB
+8d4vPdoBKcCECS]
109 23775 [OTA Task] [OTA] Job was accepted. Attempting to start transfer.
110 23775 [OTA Task] Sending command to MQTT task.
111 23775 [MQTT] Received message 80000 from queue.
112 23852 [IP-task] Socket sending wakeup to MQTT task.
113 23852 [MQTT] Received message 0 from queue.
114 23901 [IP-task] Socket sending wakeup to MQTT task.
115 23901 [MQTT] Received message 0 from queue.
116 23922 [IP-task] Socket sending wakeup to MQTT task.
117 23922 [MQTT] Received message 0 from queue.
118 23922 [MQTT] MQTT Subscribe was accepted. Subscribed.
119 23922 [MQTT] Notifying task.
120 23923 [OTA Task] Command sent to MQTT task passed.
121 23923 [OTA Task] [OTA] Subscribed to topic: $aws/things/MchpBoard-1/streams/
f9d9eff7-51b5-4442-840c-8dfe73366ed9
122 23926 [OTA Task] [OTA-MCHP] Create - Erased the flash OK
123 23926 [OTA Task] [OTA] Returned buffer to MQTT Client.
124 24241 [OTA] [OTA] Queued: 2 Processed: 2 Dropped: 0
125 25241 [OTA] [OTA] Queued: 2 Processed: 2 Dropped: 0
126 25923 [OTA Task] Sending command to MQTT task.
127 25923 [MQTT] Received message 90000 from queue.
128 25923 [MQTT] Notifying task.
129 25924 [OTA Task] Command sent to MQTT task passed.
130 25925 [OTA Task] [OTA] Published file request to $aws/bin/things/MchpBoard-1/streams/
f9d9eff7-51b5-4442-840c-8dfe73366ed9/get131 26061 [IP-task] Socket sending wakeup to MQTT
 task.
132 26061 [MQTT] Received message 0 from queue.
133 26241 [OTA] [OTA] Queued: 2 Processed: 2 Dropped: 0
134 26423 [IP-task] Socket sending wakeup to MQTT task.
135 26423 [MQTT] Received message 0 from queue.
136 26434 [IP-task] Socket sending wakeup to MQTT task.

49

Amazon FreeRTOS User Guide
Using the OTA Update Demo Application

on the Microchip Curiosity PIC32MZEF

137 26434 [MQTT] Received message 0 from queue.
138 26437 [OTA Task] [OTA] Received file block 0, size 1024
139 26449 [OTA Task] [OTA] Remaining: 574
140 26449 [OTA Task] [OTA] Returned buffer to MQTT Client.
141 26485 [IP-task] Socket sending wakeup to MQTT task.
142 26485 [MQTT] Received message 0 from queue.
143 26496 [IP-task] Socket sending wakeup to MQTT task.
144 26496 [MQTT] Received message 0 from queue.
145 26499 [OTA Task] [OTA] Received file block 1, size 1024
146 26511 [OTA Task] [OTA] Remaining: 573

After the device downloads the updated firmware, it restarts and then installs the firmware. If you
are connected by a debugger to the MPLAB X IDE, then you will need to press Continue in the top
debugging menu or F5. You can see what's happening in the UART terminal:

3941 68629 [OTA Task] [OTA-MCHP] Resetting MCU to activate new image.
AWS Validate: no valid signature in descr: 0xbd000000
AWS Validate: Valid CRC found in descr: 0xbd100000
AWS Validate: valid signature found in upper

>AWS Launch: Map PFM Up to Low: 0xbd100000
AWS Launch: wait for app at: 0x9d000020
WILC1000: Initializing...
0 0

>[None] Seed for randomizer: 3644421320
1 0 [None] Random numbers: 000050CA 00000EB8 00002B3A 0000290E
Chip ID 1503a0
Firmware ver : 4.2.1
Min driver ver : 4.2.1
Curr driver ver: 4.2.1
WILC1000: Initialization successful!

Start Wi-Fi Connection...
Wi-Fi Connected
2 7238 [IP-task] vDHCPProcess: offer c0a82b6fip
3 7269 [IP-task] vDHCPProcess: offer c0a82b6fip
4 7269 [IP-task]

IP Address: 192.168.43.111
5 7269 [IP-task] Subnet Mask: 255.255.255.0
6 7269 [IP-task] Gateway Address: 192.168.43.1
7 7269 [IP-task] DNS Server Address: 192.168.43.1

8 7271 [OTA] OTA demo version 0.9.1

50

Amazon FreeRTOS User Guide
Amazon FreeRTOS Architecture

Amazon FreeRTOS Developer Guide
This section contains information required for writing embedded applications with Amazon FreeRTOS.

Topics
• Amazon FreeRTOS Architecture (p. 51)
• FreeRTOS Kernel Fundamentals (p. 52)
• FreeRTOS Libraries (p. 57)
• Amazon FreeRTOS Over-the-Air Updates (p. 67)
• Amazon FreeRTOS Configuration Wizard User Guide (p. 70)
• Downloading Amazon FreeRTOS from GitHub (p. 71)
• Amazon FreeRTOS Qualification Program (p. 71)
• Supported Platforms (p. 73)

Amazon FreeRTOS Architecture
Amazon FreeRTOS is intended for use on embedded microcontrollers. It is typically flashed to devices
as a single compiled image with all the components required for the device application. This image
combines functionality for the application written by the embedded developer, software libraries
provided by Amazon, the FreeRTOS kernel, and drivers and board support packages (BSPs) for the
hardware platform. Independent of the individual microcontroller being used, embedded application
developers can expect the same standardized interfaces to the FreeRTOS kernel and all Amazon
FreeRTOS software libraries.

51

Amazon FreeRTOS User Guide
FreeRTOS Kernel Fundamentals

FreeRTOS Kernel Fundamentals
The FreeRTOS kernel is a real-time operating system that supports numerous architectures. It is ideal for
building embedded microcontroller applications. It provides:

• A multitasking scheduler.
• Multiple memory allocation options (including the ability to create completely statically allocated

systems).
• Inter-task coordination primitives, including task notifications, message queues, multiple types of

semaphore, and stream and message buffers.

The FreeRTOS kernel never performs non-deterministic operations, such as walking a linked list, inside
a critical section or interrupt. The FreeRTOS kernel includes an efficient software timer implementation
that does not use any CPU time unless a timer needs servicing. Blocked tasks do not require time-
consuming periodic servicing. Direct-to-task notifications allow fast task signaling, with practically no
RAM overhead. They can be used in the majority of inter-task and interrupt-to-task signaling scenarios.

The FreeRTOS kernel is designed to be small, simple, and easy to use. A typical RTOS kernel binary image
is in the range of 4000 to 9000 bytes.

FreeRTOS Kernel Scheduler
An embedded application that uses an RTOS can be structured as a set of independent tasks. Each task
executes within its own context with no dependency on other tasks. Only one task within the application
is running at any point in time. The real-time RTOS scheduler determines when each task should run.
Each task is provided with its own stack. When a task is swapped out so another task can run, the task’s
execution context is saved to the task stack so it can be restored when the same task is later swapped
back in to resume its execution.

To provide deterministic real-time behavior, the FreeRTOS tasks scheduler allows tasks to be assigned
strict priorities. RTOS ensures the highest priority task that is able to execute is given processing
time. This requires sharing processing time between tasks of equal priority if they are ready to run
simultaneously. FreeRTOS also creates an idle task that executes only when no other tasks are ready to
run.

Memory Management

Kernel Memory Allocation
The RTOS kernel needs RAM each time a task, queue, or other RTOS object is created. The RAM can be
allocated:

• Statically at compile time.
• Dynamically from the RTOS heap by the RTOS API object creation functions.

When RTOS objects are created dynamically, using the standard C library malloc() and free()
functions is not always appropriate for a number of reasons:

• They might not be available on embedded systems.
• They take up valuable code space.
• They are not typically thread-safe.
• They are not deterministic.

52

Amazon FreeRTOS User Guide
Inter-task Coordination

For these reasons, FreeRTOS keeps the memory allocation API in its portable layer. The portable
layer is outside of the source files that implement the core RTOS functionality, so you can provide an
application-specific implementation appropriate for the real-time system you're developing. When the
RTOS kernel requires RAM, it calls pvPortMalloc() instead of malloc()(). When RAM is being freed,
the RTOS kernel calls vPortFree() instead of free().

Application Memory Management
When applications need memory, they can allocate it from the FreeRTOS heap. FreeRTOS offers several
heap management schemes that range in complexity and features. You can also provide your own heap
implementation.

The FreeRTOS kernel includes five heap implementations:

heap_1

The simplest implementation. Does not permit memory to be freed.
heap_2

Permits memory to be freed, but not does coalescence adjacent free blocks.
heap_3

Wraps the standard malloc() and free() for thread safety.
heap_4

Coalesces adjacent free blocks to avoid fragmentation. Includes an absolute address placement
option.

heap_5

Similar to heap_4. Can span the heap across multiple, non-adjacent memory areas.

Inter-task Coordination

Queues
Queues are the primary form of inter-task communication. They can be used to send messages between
tasks and between interrupts and tasks. In most cases, they are used as thread-safe FIFO (First In First
Out) buffers with new data being sent to the back of the queue. (Data can also be sent to the front of the
queue.) Messages are sent through queues by copy, meaning the data (which can be a pointer to larger
buffers) is itself copied into the queue rather than simply storing a reference to the data.

Queue APIs permit a block time to be specified. When a task attempts to read from an empty queue, the
task is placed into the Blocked state until data becomes available on the queue or the block time elapses.
Tasks in the Blocked state do not consume any CPU time, allowing other tasks to run. Similarly, when
a task attempts to write to a full queue, the task is placed into the Blocked state until space becomes
available in the queue or the block time elapses. If more than one task blocks on the same queue, the
task with the highest priority is unblocked first.

Other FreeRTOS primitives, such as direct-to-task notifications and stream and message buffers, offer
lightweight alternatives to queues in many common design scenarios.

Semaphores and Mutexes
The FreeRTOS kernel provides binary semaphores, counting semaphores, and mutexes for both mutual
exclusion and synchronization purposes.

53

Amazon FreeRTOS User Guide
Inter-task Coordination

Binary semaphores can only have two values. They are a good choice for implementing synchronization
(either between tasks or between tasks and an interrupt). Counting semaphores take more than two
values. They allow many tasks to share resources or perform more complex synchronization operations.

Mutexes are binary semaphores that include a priority inheritance mechanism. This means that if a high
priority task blocks while attempting to obtain a mutex that is currently held by a lower priority task, the
priority of the task holding the token is temporarily raised to that of the blocking task. This mechanism is
designed to ensure the higher priority task is kept in the Blocked state for the shortest time possible, to
minimize the priority inversion that has occurred.

Direct-to-Task Notifications
Task notifications allow tasks to interact with other tasks, and to synchronize with interrupt service
routines (ISRs), without the need for a separate communication object like a semaphore. Each RTOS task
has a 32-bit notification value that is used to store the content of the notification, if any. An RTOS task
notification is an event sent directly to a task that can unblock the receiving task and optionally update
the receiving task's notification value.

RTOS task notifications can be used as a faster and lightweight alternative to binary and counting
semaphores and, in some cases, queues. Task notifications have both speed and RAM footprint
advantages over other FreeRTOS features that can be used to perform equivalent functionality. However,
task notifications can only be used when there is only one task that can be the recipient of the event.

Stream Buffers
Stream buffers allow a stream of bytes to be passed from an interrupt service routine to a task, or from
one task to another. A byte stream can be of arbitrary length and does not necessarily have a beginning
or an end. Any number of bytes can be written at one time, and any number of bytes can be read at
one time. Stream buffer functionality is enabled by including the <BASE_DIR>/libs/FreeRTOS/
stream_buffer.c source file in your project.

Stream buffers assume there is only one task or interrupt that writes to the buffer (the writer), and only
one task or interrupt that reads from the buffer (the reader). It is safe for the writer and reader to be
different tasks or interrupt service routines, but it is not safe to have multiple writers or readers.

The stream buffer implementation uses direct to task notifications. Therefore, calling a stream buffer
API that places the calling task into the Blocked state can change the calling task's notification state and
value.

Sending Data

xStreamBufferSend() is used to send data to a stream buffer in a task.
xStreamBufferSendFromISR() is used to send data to a stream buffer in an interrupt service routine
(ISR).

xStreamBufferSend() allows a block time to be specified. If xStreamBufferSend() is called with a
non-zero block time to write to a stream buffer and the buffer is full, the task is placed into the Blocked
state until space becomes available or the block time expires.

sbSEND_COMPLETED() and sbSEND_COMPLETED_FROM_ISR() are macros that are called (internally by
the FreeRTOS API) when data is written to a stream buffer. It takes the handle of the stream buffer that
was updated. Both of these macros check to see if there is a task blocked on the stream buffer waiting
for data, and if so, removes the task from the Blocked state.

You can change this default behavior by providing your own implementation of sbSEND_COMPLETED()
in FreeRTOSConfig.h. This is useful when a stream buffer is used to pass data between cores
on a multicore processor. In that scenario, sbSEND_COMPLETED() can be implemented to

54

Amazon FreeRTOS User Guide
Inter-task Coordination

generate an interrupt in the other CPU core, and the interrupt's service routine can then use the
xStreamBufferSendCompletedFromISR() API to check, and if necessary unblock, a task that is
waiting for the data.

Receiving Data

xStreamBufferReceive() is used to read data from a stream buffer in a task.
xStreamBufferReceiveFromISR() is used to read data from a stream buffer in an interrupt service
routine (ISR).

xStreamBufferReceive() allows a block time to be specified. If xStreamBufferReceive() is called
with a non-zero block time to read from a stream buffer and the buffer is empty, the task is placed into
the Blocked state until either a specified amount of data becomes available in the stream buffer, or the
block time expires.

The amount of data that must be in the stream buffer before a task is unblocked is called the
stream buffer's trigger level. A task blocked with a trigger level of 10 is unblocked when at least 10
bytes are written to the buffer or the task's block time expires. If a reading task's block time expires
before the trigger level is reached, the task receives any data written to the buffer. The trigger
level of a task must be set to a value between 1 and the size of the stream buffer. The trigger level
of a stream buffer is set when xStreamBufferCreate() is called. It can be changed by calling
xStreamBufferSetTriggerLevel().

sbRECEIVE_COMPLETED() and sbRECEIVE_COMPLETED_FROM_ISR() are macros that are called
(internally by the FreeRTOS API) when data is read from a stream buffer. The macros check to see
if there is a task blocked on the stream buffer waiting for space to become available within the
buffer, and if so, removes the task from the Blocked state. You can change the default behavior of
sbRECEIVE_COMPLETED() by providing an alternative implementation in FreeRTOSConfig.h.

Message Buffers
Message buffers allow variable length discrete messages to be passed from an interrupt service
routine to a task, or from one task to another. For example, messages of length 10, 20 and 123
bytes can all be written to, and read from, the same message buffer. A 10-byte message can only
be read as a 10-byte message, not as individual bytes. Message buffers are built on top of stream
buffer implementation. Message buffer functionality is enabled by including the <BASE_DIR>/libs/
FreeRTOS/stream_buffer.c source file in your project.

Message buffers assume there is only one task or interrupt that writes to the buffer (the writer), and only
one task or interrupt that reads from the buffer (the reader). It is safe for the writer and reader to be
different tasks or interrupt service routines, but it is not safe to have multiple writers or readers.

The message buffer implementation uses direct to task notifications. Therefore, calling a stream buffer
API that places the calling task into the Blocked state can change the calling task's notification state and
value.

To enable message buffers to handle variable-sized messages, the length of each message is written into
the message buffer before the message itself. The length is stored in a variable of type size_t, which is
typically 4 bytes on a 32-byte architecture. Therefore, writing a 10-byte message into a message buffer
actually consumes 14 bytes of buffer space. Likewise, writing a 100-byte message into a message buffer
actually uses 104 bytes of buffer space.

Sending Data

xMessageBufferSend() is used to send data to a message buffer from a task.
xMessageBufferSendFromISR() is used to send data to a message buffer from an interrupt service
routine (ISR).

55

Amazon FreeRTOS User Guide
Software Timers

xMessageBufferSend() allows a block time to be specified. If xMessageBufferSend() is called
with a non-zero block time to write to a message buffer and the buffer is full, the task is placed into the
Blocked state until either space becomes available in the message buffer, or the block time expires.

sbSEND_COMPLETED() and sbSEND_COMPLETED_FROM_ISR() are macros that are called (internally
by the FreeRTOS API) when data is written to a stream buffer. It takes a single parameter, which is
the handle of the stream buffer that was updated. Both of these macros check to see if there is a task
blocked on the stream buffer waiting for data, and if so, they remove the task from the Blocked state.

You can change this default behavior by providing your own implementation of sbSEND_COMPLETED()
in FreeRTOSConfig.h. This is useful when a stream buffer is used to pass data between cores
on a multicore processor. In that scenario, sbSEND_COMPLETED() can be implemented to
generate an interrupt in the other CPU core, and the interrupt's service routine can then use the
xStreamBufferSendCompletedFromISR() API to check, and if necessary unblock, a task that was
waiting for the data.

Receiving Data

xMessageBufferReceive() is used to read data from a message buffer in a task.
xMessageBufferReceiveFromISR() is used to read data from a message buffer in an interrupt
service routine (ISR). xMessageBufferReceive() allows a block time to be specified. If
xMessageBufferReceive() is called with a non-zero block time to read from a message buffer and
the buffer is empty, the task is placed into the Blocked state until either data becomes available, or the
block time expires.

sbRECEIVE_COMPLETED() and sbRECEIVE_COMPLETED_FROM_ISR() are macros that are called
(internally by the FreeRTOS API) when data is read from a stream buffer. The macros check to see
if there is a task blocked on the stream buffer waiting for space to become available within the
buffer, and if so, removes the task from the Blocked state. You can change the default behavior of
sbRECEIVE_COMPLETED() by providing an alternative implementation in FreeRTOSConfig.h.

Software Timers
A software timer allows a function to be executed at a set time in the future. The function executed by
the timer is called the timer’s callback function. The time between a timer being started and its callback
function being executed is called the timer’s period. The FreeRTOS kernel provides an efficient software
timer implementation because:

• It does not execute timer callback functions from an interrupt context.
• It does not consume any processing time unless a timer has actually expired.
• It does not add any processing overhead to the tick interrupt.
• It does not walk any link list structures while interrupts are disabled.

Low Power Support
Like most embedded operating systems, the FreeRTOS kernel users a hardware timer to generate
periodic tick interrupts, which are used to measure time. The power saving of regular hardware timer
implementations is limited by the necessity to periodically exit and then re-enter the low power state to
process tick interrupts. If the frequency of the tick interrupt is too high, the energy and time consumed
entering and exiting a low power state for every tick outweighs any potential power saving gains for all
but the lightest power saving modes.

To address this limitation, FreeRTOS includes a tickless timer mode for low-power applications. The
FreeRTOS tickless idle mode stops the periodic tick interrupt during idle periods (periods when there are
no application tasks that are able to execute), and then makes a correcting adjustment to the RTOS tick
count value when the tick interrupt is restarted. Stopping the tick interrupt allows the microcontroller to

56

Amazon FreeRTOS User Guide
FreeRTOS Libraries

remain in a deep power saving state until either an interrupt occurs, or it is time for the RTOS kernel to
transition a task into the ready state.

FreeRTOS Libraries
This section describes how to use the Amazon FreeRTOS libraries when you are writing embedded
applications.

Topics
• Cloud Connectivity (p. 57)
• Greengrass Connectivity (p. 59)
• Amazon FreeRTOS Security (p. 61)
• FreeRTOS Wi-Fi Interface (p. 65)
• OTA Agent Library (p. 66)

Cloud Connectivity
Topics

• MQTT (p. 57)
• Device Shadows (p. 58)

MQTT
The MQTT agent implements the MQTT protocol, which is a lightweight protocol designed for
constrained devices. The MQTT agent runs in a separate FreeRTOS task and automatically sends
regular keep-alive messages, as documented by the MQTT protocol specification. All the MQTT APIs are
blocking and take a timeout parameter, which is the maximum amount of time the API waits for the
corresponding operation to complete. If the operation does not complete in the provided time, the API
returns timeout error code.

Callback

You can specify an optional callback that is invoked whenever the MQTT agent is disconnected
from the broker or whenever a publish message is received from the broker. The received publish
message is stored in a buffer taken from the central buffer pool. This message is passed to the
callback. This callback runs in the context of the MQTT task and therefore must be quick. If you
need to do longer processing, you must take the ownership of the buffer by returning pdTRUE from
the callback. You must then return the buffer back to the pool whenever you are done by calling
FreeRTOS_Agent_ReturnBuffer.

Subscription Management

Subscription management enables you to register a callback per subscription filter. You supply this
callback while subscribing. It is invoked whenever a publish message received on a topic matches the
subscribed topic filter. The buffer ownership works the same way as described in the case of generic
callback.

MQTT Task Wakeup

MQTT task wakeup wakes up whenever the user calls an API to perform any operation or whenever
a publish message is received from the broker. This asynchronous wakeup upon receipt of a publish
message is possible on platforms that are capable of informing the host MCU about the data received

57

Amazon FreeRTOS User Guide
Cloud Connectivity

on a connected socket. Platforms that do not have this capability require the MQTT task to continuously
poll for the received data on the connected socket. To ensure the delay between receiving a publish
message and invoking the callback is minimal, the mqttconfigMQTT_TASK_MAX_BLOCK_TICKS
macro controls the maximum time an MQTT task can remain blocked. This value must be short for the
platforms that lack the capability to inform the host MCU about received data on a connected socket.

Major Configurations

These flags can be specified during the MQTT connection request:

• mqttconfigKEEP_ALIVE_ACTUAL_INTERVAL_TICKS: The frequency of the keep-alive messages
sent.

• mqttconfigENABLE_SUBSCRIPTION_MANAGEMENT: Enable subscription management.
• mqttconfigMAX_BROKERS: Maximum number of simultaneous MQTT clients.
• mqttconfigMQTT_TASK_STACK_DEPTH: The task stack depth.
• mqttconfigMQTT_TASK_PRIORITY: The priority of the MQTT task.
• mqttconfigRX_BUFFER_SIZE: Length of the buffer used to receive data.
• mqttagentURL_IS_IP_ADDRESS: Set this bit in xFlags if the provided URL is an IP address.
• mqttagentREQUIRE_TLS: Set this bit in xFlags to use TLS.
• mqttagentUSE_AWS_IOT_ALPN_443: Set this bit in xFlags to use AWS IoT support for MQTT over

TLS port 443.

For more information about ALPN, see the AWS IoT Protocols in the AWS IoT Developer Guide and the
MQTT with TLS Client Authentication on Port 443: Why It Is Useful and How It Works on the Internet of
Things on AWS blog.

Device Shadows
The Amazon FreeRTOS API provides functions to create, delete, and update a device's shadow. For more
information, see Device Shadows. Device shadows are accessed using the MQTT protocol. The FreeRTOS
device shadow API works with the MQTT API and handles the details of working with the MQTT protocol.

The Amazon FreeRTOS device shadow APIs define functions to create, update, and delete device
shadows.

Prerequisites For Using the Device Shadows API

You need to create a thing in AWS IoT, including a certificate and policy. For more information, see AWS
IoT Getting Started. You must set values for the following constants in the AmazonFreeRTOS/demos/
common/include/aws_client_credentials.h file:

clientcredentialMQTT_BROKER_ENDPOINT

Your AWS IoT endpoint.
clientcredentialIOT_THING_NAME

The name of your IoT thing.
clientcredentialWIFI_SSID

The SSID of your Wi-Fi network.
clientcredentialWIFI_PASSWORD

Your Wi-Fi password.
clientcredentialWIFI_SECURITY

The type of Wi-Fi security used by your network.

58

http://docs.aws.amazon.com/iot/latest/developerguide/protocols.html
https://aws.amazon.com/blogs/iot/mqtt-with-tls-client-authentication-on-port-443-why-it-is-useful-and-how-it-works
http://docs.aws.amazon.com/iot/latest/developerguide/iot-thing-shadows.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

Amazon FreeRTOS User Guide
Greengrass Connectivity

clientcredentialCLIENT_CERTIFICATE_PEM

The certificate PEM associated with your IoT thing. For more information, see Configure Your AWS
IoT Credentials (p. 15).

clientcredentialCLIENT_PRIVATE_KEY_PEM

The private key PEM associated with your IoT thing. For more information, see Configure Your AWS
IoT Credentials (p. 15).

Make sure the Amazon FreeRTOS MQTT library is installed on your device. For more information, see
MQTT (p. 57). Make sure that the MQTT buffers are large enough to contain the shadow JSON files.
The maximum size for a device shadow document is 8 KB. All default settings for the device shadow API
can be set in the lib\include\private\aws_shadow_config_defaults.h file. You can modify any
of these settings in the demos/<platform>/common/config_files/aws_shadow_config.h file.

You must have an IoT thing registered with AWS IoT, including a certificate with a policy that permits
accessing the device shadow. For more information, see AWS IoT Getting Started.

Using the Device Shadow APIs

1. Use the SHADOW_ClientCreate API to create a shadow client. For most applications, the only field
to fill is xCreateParams.xMQTTClientType = eDedicatedMQTTClient.

2. Establish an MQTT connection by calling the SHADOW_ClientConnect API, passing the client handle
returned by SHADOW_ClientCreate.

3. Call the SHADOW_RegisterCallbacks API to configure callbacks for shadow update, get, and delete.

After a connection is established, you can use the following APIs to work with the device shadow:

SHADOW_Delete

Delete the device shadow.
SHADOW_Get

Get the current device shadow.
SHADOW_Update

Update the device shadow.

Note
When you are done working with the device shadow, call SHADOW_ClientDisconnect to
disconnect the shadow client and free system resources.

Greengrass Connectivity
The Greengrass Discovery API is used by your microcontroller devices to discover a Greengrass core on
your network. Your device can send messages to a Greengrass core after it finds the core's endpoint.

Prerequisites
To use the Greengrass Discovery API, you must create a thing in AWS IoT, including a certificate and
policy. For more information, see AWS IoT Getting Started. You must set values for the following
constants in the AmazonFreeRTOS\demos\common\include\aws_client_credentials.h` file:

clientcredentialMQTT_BROKER_ENDPOINT

Your AWS IoT endpoint.

59

http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

Amazon FreeRTOS User Guide
Greengrass Connectivity

clientcredentialIOT_THING_NAME

The name of your IoT thing.
clientcredentialWIFI_SSID

The SSID for your Wi-Fi network.
clientcredentialWIFI_PASSWORD

Your Wi-Fi password.
clientcredentialWIFI_SECURITY

The type of security used by your Wi-Fi network.
clientcredentialCLIENT_CERTIFICATE_PEM

The certificate PEM associated with your thing.
clientcredentialCLIENT_PRIVATE_KEY_PEM

The private key PEM associated with your thing.

You must have a Greengrass group and core device set up in the console. For more information, see
Getting Started with AWS Greengrass.

Although the MQTT library is not required for Greengrass connectivity, we strongly recommend you
install it. The library can be used to communicate with the Greengrass core after it has been discovered.

Greengrass Workflow
The MCU device initiates the discovery process by requesting from AWS IoT a JSON file that contains
the Greengrass core connectivity parameters. There are two methods for retrieving the Greengrass core
connectivity parameters from the JSON file:

• Automatic selection iterates through all of the Greengrass cores listed in the JSON file and connects to
the first one available.

• Manual selection uses the information in aws_ggd_config.h to connect to the specified Greengrass
core.

How to Use the Greengrass API
All default configuration options for the Greengrass API are defined in lib\include\private
\aws_ggd_config_defaults.h. You can override any of these settings in lib\include\.

If only one Greengrass core is present, call GGD_GetGGCIPandCertificate to request the JSON file
with Greengrass core connectivity information. When GGD_GetGGCIPandCertificate is returned, the
pcBuffer parameter contains the text of the JSON file. The pxHostAddressData parameter contains
the IP address and port of the Greengrass core to which you can connect.

For more customization options, like dynamically allocating certificates, you must call the following APIs:

GGD_JSONRequestStart

Makes an HTTP GET request to AWS IoT to initiate the discovery request to discover a Greengrass
core. GD_SecureConnect_Send is used to send the request to AWS IoT.

GGD_JSONRequestGetSize

Gets the size of the JSON file from the HTTP response.

60

http://docs.aws.amazon.com/greengrass/latest/developerguide/

Amazon FreeRTOS User Guide
Amazon FreeRTOS Security

GGD_JSONRequestGetFile

Gets the JSON object string. GGD_JSONRequestGetSize and GGD_JSONRequestGetFile use
GGD_SecureConnect_Read to get the JSON data from the socket. GGD_JSONRequestStart,
GGD_SecureConnect_Send, GGD_JSONRequestGetSize must be called to receive the JSON data
from AWS IoT.

GGD_GetIPandCertificateFromJSON

Extracts the IP address and the Greengrass core certificate from the JSON data. You can turn on
automatic selection by setting the xAutoSelectFlag to True. Automatic selection finds the
first core device your FreeRTOS device can connect to. To connect to a Greengrass core, call the
GGD_SecureConnect_Connect function, passing in the IP address, port, and certificate of the core
device. To use manual selection, set the following fields of the HostParameters_t parameter:

pcGroupName

The ID of the Greengrass group to which the core belongs. You can use the aws greengrass
list-groups CLI command to find the ID of your Greengrass groups.

pcCoreAddress

The ARN of the Greengrass core to which you are connecting.

Amazon FreeRTOS Security
The Amazon FreeRTOS security API allows you to create embedded applications that communicate
securely. The information in this section is intended to complement the API documentation.

Secure Sockets
The Secure Sockets interface is based on the Berkeley socket interface. It is provided for the
easy onboarding of software developers from various network programming backgrounds. The
reference implementation for Secure Sockets supports TLS and TCP/IP over Ethernet and Wi-Fi. See
aws_secure_sockets.h in the Amazon FreeRTOS source code repository.

Secure Sockets Ports

This section contains information about Secure Socket ports for Amazon FreeRTOS-qualified boards.
For information about creating your own port for Amazon FreeRTOS, see the Amazon FreeRTOS Porting
Guide.

STM32 IoT Discovery Kit Secure Sockets Port

• This port supports up to four sockets.

• SOCKETS_PERIPHERAL_RESET means that the Wi-Fi module has been reset. This occurs when the Wi-
Fi module stops responding or gets out of sync with the SPI driver. Call WiFi_ConnectAP to reconnect
to your Wi-Fi network.

Sockets_Connect

• SocketsSockaddr_t uses the usPort and ulAddress fields only. ucLength and ucSocketDomain
are not used.

• Supports IPv4 only.

• Sends connection information to the Wi-Fi module only. A successful return does not guarantee that
the socket was able to reach the provided IP address.

61

http://docs.aws.amazon.com/freertos/latest/userguide/porting-guide.html
http://docs.aws.amazon.com/freertos/latest/userguide/porting-guide.html

Amazon FreeRTOS User Guide
Amazon FreeRTOS Security

Sockets_SetSockOpt

For SOCKETS_SO_SNDTIMEO and SOCKETS_SO_RCVTIMEO, valid values are 0 (block forever) and 30,000
milliseconds.

SOCKETS_Shutdown

SOCKETS_Shutdown does not send a FIN packet, but does prevent the socket from being used for send
and receive.

TI CC3220SF-LAUNCHXL Secure Sockets Port

This port supports up to 16 sockets. The sockets can be secured with TLS.

Sockets_Connect

• SocketsSockaddr_t uses the usPort and ulAddress fields only. ucLength and ucSocketDomain
are not used.

• Supports IPv4 only.

• Receiving a negative error code from SOCKETS_Connect does not mean that the socket was closed.
Applications must close sockets after they receive a negative error code.

• When using a TLS-enabled socket, sometimes a connection is made even though SOCKETS_Connect
returned an error. This might indicate that the connection cannot be authenticated using the provided
root of trust. We strongly recommend that you explicitly close the socket if a handshake-related error
is returned, even if the connection is made.

• In the event of handshake error, you can get information by enabling printing or by investigating the
asynchronous event handler structure set in SimpleLinkSockEventHandler.

Sockets_SetSockOpt

SOCKETS_SO_RCVTIMEO can be specified in 10-millisecond increments.

SOCKETS_SO_SNDTIMEO is not used. It might be used in future versions.

SOCKETS_Send

In the event of a TX error, you can get information by investigating the TX Failed event handler structure
in SimpleLinkSockEventHandler.

SOCKETS_Shutdown

SOCKETS_Shutdown does not send a FIN packet, but does prevent the socket from being used for send
and receive.

Transport Layer Security
The Transport Layer Security (TLS) interface is a thin, optional wrapper used to abstract cryptographic
implementation details away from the Secure Sockets interface above it in the protocol stack. The
purpose of the TLS interface is to make the current software crypto library, mbed TLS, easy to replace
with an alternative implementation for TLS protocol negotiation and cryptographic primitives. The
TLS library can be swapped out without any changes required to the Secure Sockets interface. See
aws_tls.h in the Amazon FreeRTOS source code repository.

The TLS library is optional because you can choose to interface directly from Secure Sockets into a
crypto library. The Amazon FreeRTOS library is not used for MCU solutions that include a full-stack
offload implementation of TLS and network transport.

62

Amazon FreeRTOS User Guide
Amazon FreeRTOS Security

Public Key Cryptography Standard #11
Public Key Cryptography Standard #11 (PKCS#11) is a cryptographic API that abstracts key storage,
get/set properties for cryptographic objects, and session semantics. See pkcs11.h (obtained from
OASIS, the standard body) in the Amazon FreeRTOS source code repository. In the Amazon FreeRTOS
reference implementation, PKCS#11 API calls are made by the TLS helper interface in order to perform
TLS client authentication during SOCKETS_Connect. PKCS#11 API calls are also made by our one-time
developer provisioning workflow to import a TLS client certificate and private key for authentication
to the AWS IoT MQTT broker. Those two use cases, provisioning and TLS client authentication, require
implementation of only a small subset of the PKCS#11 interface standard.

The following subset of PKCS#11 is used. This list is in roughly the order in which the routines are called
in support of provisioning, TLS client authentication, and cleanup. For detailed descriptions of the
functions, see the PKCS#11 documentation provided by the standard committee.

Provisioning API

• C_GetFunctionList

• C_Initialize

• C_CreateObject CKO_PRIVATE_KEY

• C_CreateObject CKO_CERTIFICATE pkcs11CERTIFICATE_TYPE_USER

• C_CreateObject CKO_CERTIFICATE pkcs11CERTIFICATE_TYPE_ROOT

• C_DestroyObject

Client Authentication

• C_Initialize

• C_GetSlotList

• C_OpenSession

• C_FindObjectsInit

• C_FindObjects

• C_FindObjectsFinal

• C_GetAttributeValue

• C_FindObjectsInit

• C_FindObjects

• C_FindObjectsFinal

• C_GetAttributeValue

• C_GenerateRandom

• C_SignInit

• C_Sign

Cleanup

• C_CloseSession

• C_Finalize

Asymmetric Cryptosystem Support

The Amazon FreeRTOS PKCS#11 reference implementation supports 2048-bit RSA (signing only) as well
as ECDSA with the NIST P-256 curve. The following instructions describe how to create an AWS IoT thing
based on a P-256 client certificate.

63

Amazon FreeRTOS User Guide
Amazon FreeRTOS Security

Make sure you are using the following (or more recent) versions of the AWS CLI and OpenSSL:

aws --version
aws-cli/1.11.176 Python/2.7.9 Windows/8 botocore/1.7.34

openssl version
OpenSSL 1.0.2g 1 Mar 2016

The following steps are written with the assumption that you have used the aws configure command
to configure the AWS CLI.

Creating an AWS IoT thing based on a P-256 client certificate

1. Run aws iot create-thing --thing-name dcgecc to create an AWS IoT thing.

2. Run openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -pkeyopt
ec_param_enc:named_curve -outform PEM -out dcgecc.key to use OpenSSL to create a
P-256 key.

3. Run openssl req -new -nodes -days 365 -key dcgecc.key -out dcgecc.req to create
a certificate enrollment request signed by the key created in step 2.

4. Run aws iot create-certificate-from-csr --certificate-signing-request
file://dcgecc.req --set-as-active --certificate-pem-outfile dcgecc.crt to
submit the certificate enrollment request to AWS IoT.

5. Run aws iot attach-thing-principal --thing-
name dcgecc --principal "arn:aws:iot:us-
east-1:123456789012:cert/86e41339a6d1bbc67abf31faf455092cdebf8f21ffbc67c4d238d1326c7de729"
to attach the certificate (referenced by the ARN output by the previous command) to the thing.

6. Run aws iot create-policy --policy-name FullControl --policy-document
file://policy.json to create a policy. (This policy is too permissive and should be used for
development purposes only.)

The following is a listing of the policy.json file specified in the create-policy command. You can
omit the greengrass:* action if you don't want to run the Amazon FreeRTOS demo for Greengrass
connectivity and discovery.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iot:*",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "greengrass:*",
 "Resource": "*"
 }]
}

7. Run aws iot attach-principal-policy --policy-
name FullControl --principal "arn:aws:iot:us-
east-1:785484208847:cert/86e41339a6d1bbc67abf31faf455092cdebf8f21ffbc67c4d238d1326c7de729"
to attach the principal (certificate) and policy to the thing.

Now, follow the steps in the AWS IoT Getting Started section of this guide. Don’t forget to copy the
certificate and private key you created into your aws_clientcredential_keys.h file. Copy your thing
name into aws_clientcredential.h.

64

http://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

Amazon FreeRTOS User Guide
FreeRTOS Wi-Fi Interface

FreeRTOS Wi-Fi Interface
The Wi-Fi interface API provides a common abstraction layer that enables applications to communicate
with the lower-level wireless stack. Wi-Fi chip sets differ in features, driver implementations, and APIs.
The common Wi-Fi interface simplifies application development and porting for all supported Wi-Fi chip
sets. The interface provides a primary API for managing all aspects of Wi-Fi devices.

Setup, Provisioning, and Configuration
The setup APIs provide functionality to turn on Wi-Fi by initializing the radio, peripherals, and drivers.
Your application must turn on Wi-Fi by calling WIFI_On before calling any other API. An application can
turn off WI-Fi by calling WIFI_Off to save power. This is useful for power-constrained devices that have
intermittent connectivity. Calling WIFI_Reset resets the Wi-Fi radio.

The Amazon FreeRTOS demos hard code Wi-Fi credentials into the application. If you cannot connect to
your Wi-FI network using these credentials, you can put your FreeRTOS device into soft Access Point (AP)
mode. This allows you to connect the FreeRTOS device and configure a different set of Wi-Fi credentials
(SSID, password, security type, and channel). To configure AP mode, call WIFI_ConfigureAP. To put
your device into soft AP mode, call WIFI_StartAP. When your device is in soft AP mode, you can
connect another device, using a web browser to your FreeRTOS device and configure the new Wi-Fi
credentials. To turn off soft AP mode, call WIFI_StopAP.

A Wi-Fi device can be configured in a particular role at a time. Device roles like Station, Access Point, P2P
can be configured by calling WIFI_SetMode. You can get the current mode of a Wi-Fi device by calling
WIFI_GetMode. Switching modes by calling WIFI_SetMode disconnects the device, if it is already
connected to a network.

Connection
A Wi-Fi device turned on and switched to Station mode is ready to connect to the network using the
connectivity API. When calling the connection API, you pass network parameters like SSID, password,
and security type to establish a connection. You can perform a scan operation to look for networks.
The scan returns the SSID, BSSID, Channel, RSSI, and security type. The scan can be performed for
hidden networks. If you find a desired network in the scan, you can connect to the network by calling
and providing the network password. You can disconnect a Wi-Fi device from the network by calling
WIFI_Disconnect.

Security
The interface API supports several security types like WEP, WPA, WPA2, and Open (no security).
When a device is in the Station role, you must specify the network security type when calling the
WIFI_ConnectAP function. When a device is in soft AP mode, the device can be configured to use any of
the supported security types:

• eWiFiSecurityOpen

• eWiFiSecurityWEP

• eWiFiSecurityWPA

• eWiFiSecurityWPA2

Power Management
Different Wi-Fi devices have different power requirements, depending on the application and available
power sources. A device might always be powered on to reduce latency or it might be intermittently
connected and switch into a low power mode when Wi-Fi is not required. The interface API supports
various power management modes like always on, low power, and normal mode. You set the power

65

Amazon FreeRTOS User Guide
OTA Agent Library

mode for a device using the WIFI_SetPMMode function. You can get the current power mode of a device
by calling the WIFI_GetPMMode function.

Network Profiles
The Wi-Fi API enables you to save network profiles in the non-volatile memory of your devices.
This allows you to save network settings so they can be retrieved when a device reconnects to a
Wi-Fi network, removing the need to provision devices again after they have been connected to a
network. WIFI_NetworkAdd adds a network profile. WIFI_NetworkGet retrieves a network profile.
WIFI_NetworkDel deletes a network profile. The number of profiles you can save depends on the
platform.

Network Utilities
The Wi-Fi API also provides utility functions described in the following table:

API Description

WIFI_GetIP Gets the IP address of a device.

WIFI_GetHostIP Gets the host IP address.

WIFI_GetMAC Gets the MAC address of a device.

WIFI_Ping Sends a ping to a device on the network.

WIFI_Scan Scans for available Wi-Fi networks.

OTA Agent Library
The OTA agent library enables you to manage the notification, download, and verification of firmware
updates for Amazon FreeRTOS devices. By using the OTA agent library, you can logically separate
firmware updates and the application running on your devices. The OTA agent can share a network
connection with the application. By sharing a network connection, you can potentially save a significant
amount of RAM. In addition, the OTA agent library allows you to define application-specific logic for
testing, committing, or rolling back a firmware update.

Here is the complete OTA agent interface:

OTA_AgentInit

Initializes the OTA engine. The caller provides messaging protocol callbacks and a timeout.
OTA_AgentShutdown

Cleans up after using the OTA engine.
OTA_GetAgentState

Gets the current state of the OTA agent.
OTA_ActivateNewImage

Activates the newest microcontroller firmware image received through OTA. (The detailed job status
should now be self-test.)

OTA_SetImageState

Sets the validation state of the currently running microcontroller firmware image (testing, accepted
or rejected).

66

Amazon FreeRTOS User Guide
Amazon FreeRTOS Over-the-Air Updates

OTA_GetImageState

Gets the state of the currently running microcontroller firmware image (testing, accepted or
rejected).

OTA_CheckForUpdate

Requests the next available OTA update from the OTA Update service.

A typical OTA-capable device application drives the OTA agent using the following sequence of API calls:

1. Connect to the AWS IoT MQTT broker. This step is not required if you are not using AWS IoT Device
Management, or if you prefer an alternative implementation of MQTT. For more information, see
MQTT (p. 57).

2. Initialize the OTA agent by calling OTA_AgentInit. Your application must define an OTA callback
function and a timeout. The callback implements application-specific logic that is executed after an
OTA update job is complete. The timeout defines how long to wait for the initialization to complete.

3. If OTA_AgentInit timed out before the agent was ready, you can call OTA_GetAgentState to
confirm that the agent is initialized and operating as expected.

4. When the OTA update is complete, your job completion callback is called and determines whether
the update is accepted or rejected.

5. If the new firmware image has been rejected (for example, due to a validation error), the application
can typically ignore the notification and wait for the next update or try again.

6. If the update is valid and has been marked as accepted, call OTA_ActivateNewImage to reset the
device and boot the new firmware image.

Amazon FreeRTOS Over-the-Air Updates
The Amazon FreeRTOS Over-the-Air Update service enables you to:

• Digitally sign and encrypt firmware before deployment.
• Securely deploy new firmware images to a single device, a group of devices, or your entire fleet.
• Deploy firmware to devices as they are added to groups, reset, or reprovisioned.
• Verify the authenticity and integrity of the new firmware after it's deployed to devices.
• Monitor the progress of a deployment.
• Debug a failed deployment.

Devices communicate with the Amazon FreeRTOS OTA Update service using MQTT messages. Each
device must subscribe to the appropriate topics to receive messages. MQTT messages are used to notify
devices that an update is available, report the status of an update, and to stream the firmware updates.
Each device has its own set of MQTT topics.

OTA Update includes the following components:

OTA Manager Service

The OTA Manager service enables users to create and manage deployments of firmware images on
one or more devices or MCUs. The OTA Manager Service uses the AWS IoT Jobs service to schedule
deployments.

AWS IoT Jobs Service

The AWS IoT Jobs service is a cloud-based managed service for scheduling, orchestration,
notification, and status reporting of OTA updates and other remote operations on distributed fleets
of small devices. To update a device, you create an OTA update job. The job specifies which devices

67

Amazon FreeRTOS User Guide
Amazon FreeRTOS Over-the-Air Updates

should perform the update and where to find the firmware image, among other things. When a
job is deployed to a device, a job execution is created. The job execution represents a single device
applying the update. For more information, see AWS IoT Jobs.

Streaming Service

The Streaming service delivers new firmware images over MQTT to your devices. The Streaming
service breaks up the firmware image into chunks and delivers each chunk as an MQTT message to
the devices that are being updated. The service can redeliver blocks or a full image on request.

Code Signing for Amazon FreeRTOS Service

Code Signing for Amazon FreeRTOS is a managed AWS service that enables you to sign code that
you create for any IoT device that is supported by Amazon Web Services (AWS). Code Signing
is integrated with Amazon FreeRTOS and AWS Certificate Manager (ACM). Amazon FreeRTOS
customers can use Code Signing to sign a code image before publishing it to a microcontroller
device. You can use ACM to import a third-party code signing certificate that you can use during the
signing process.

OTA Library and Agent

The OTA library allows the device developer to logically separate the application from the OTA
process. The OTA library controls an OTA agent that is executed as a FreeRTOS task.

The OTA agent is responsible for:
• Downloading a new executable image from the cloud.
• Validating the image in a way that is appropriate for the application and device.
• Handling interruptions during the download.
• Managing updates that are separated into multiple sections.

The OTA agent also supports a Greengrass-mediated OTA mode for devices that are not directly
connected to the cloud. In this mode, the update is downloaded by a trusted Greengrass core, which
then pushes the update to Amazon FreeRTOS devices connected to it.

By automating firmware signature verification, the OTA library makes it easy for you to protect the
integrity of your devices. By defining a portable abstraction layer (PAL), the OTA library minimizes
the burden for onboarding new hardware to OTA-enabled applications.

Currently, OTA is supported in the following regions only:

• us-east-1 / US East (N. Virginia)
• us-east-2 / US East (Ohio)
• us-west-2 / US West (Oregon)
• eu-west-1 / EU (Ireland)
• eu-central-1 / EU (Frankfurt)
• eu-west-2 / EU (London)
• ap-northeast-1 / Asia Pacific (Tokyo)
• ap-southeast-2 / Asia Pacific (Sydney)

The region you are working in is displayed in the upper-right corner of the AWS Management Console.
You can use the drop-down list to change the region. Before you create an OTA update, make sure you
are working in one of these supported regions.

Note
For the Amazon FreeRTOS OTA agent to commit a firmware upgrade, the firmware image must
include the OTA agent library. The firmware version must be more recent than the currently
installed firmware.

68

http://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html

Amazon FreeRTOS User Guide
OTA Workflow

OTA Workflow
This section describes the OTA update workflow. OTA updates are currently supported on the following
platform. Select a platform below to find a console-based tutorial for that platform:

• Texas Instruments SimpleLink Wi-Fi CC3220SF-LAUNCHXL (p. 36).

• Microchip Curiosity PIC32MZEF (p. 43).

1. Create a self‐signed certificate or purchase a code‐signing certificate and a private key and import
them into ACM. For more information, see Create a Code-Signing Certificate and Private Key (p. 37).

2. Deploy a device with factory-provisioned firmware (for example, v1.0). The v1.0 firmware must
be configured to trust the code-signing certificate created in step 1. For more information, see
Installing the Initial Firmware (p. 38).

3. When a firmware update is required, make the code changes and build the new image. For more
information, see Creating a Firmware Update (p. 40).

4. Upload the new firmware image into an Amazon S3 bucket. For more information, see Uploading
Updated Firmware (p. 41).

5. Digitally sign the new firmware image. You can do this step manually, or you can use the AWS IoT
console which uses the Code Signing for Amazon FreeRTOS service.

6. Using the AWS IoT Device Management console, schedule an OTA update job. For more information,
see Create an OTA Update Job (p. 41).

7. The Amazon FreeRTOS OTA agent on the device receives the updated firmware image.

8. The device verifies the digital signature, checksum, and version number of the new image.

9. Reset the board and, based on application-defined logic, commit the update. This includes notifying
AWS IoT Device Management that the device has (or has not) successfully completed the OTA
update.

OTA Security
The following are three aspects of OTA security:

Connection security

The OTA Update service relies on existing security mechanisms like TLS mutual authentication,
used by AWS IoT. OTA update traffic passes through the AWS IoT device gateway and uses AWS IoT
security mechanisims. Each incoming and outgoing MQTT message through the device gateway
undergoes strict authentication and authorization.

Authenticity and integrity of OTA updates

Firmware can be digitally signed before an OTA update to ensure that it is from a reliable source
and has not been tampered with. The Amazon FreeRTOS OTA Update service uses the Code Signing
for Amazon FreeRTOS service to automatically sign your firmware. For more information, see Code
Signing for Amazon FreeRTOS. The OTA agent, which runs on your devices, performs integrity checks
on the firmware when it arrives on the device.

Operator security

Every API call made through the control plane API undergoes standard IAM Signature Version 4
authentication and authorization. To create a deployment, you must have permissions to invoke the
CreateDeployment, CreateJob, and CreateStream APIs. In addition, in your Amazon S3 bucket
policy or ACL, you must give read permissions to the AWS IoT service principal so that the firmware
update stored in Amazon S3 can be accessed during streaming.

69

http://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
http://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html

Amazon FreeRTOS User Guide
Monitoring Updates

Code Signing for Amazon FreeRTOS
The AWS IoT console uses Code Signing for Amazon FreeRTOS to automatically sign your firmware image
for any device supported by AWS IoT.

Code Signing for Amazon FreeRTOS uses a certificate and private key that you import into ACM. You can
use a self–signed certificate for testing, but we recommend that you obtain a certificate from a well–
known commercial certificate authority (CA).

Code–signing certificates use the X.509 version 3 Key Usage and Extended Key Usage extensions. The
Key Usage extension is set to Digital Signature and the Extended Key Usage extension is set to
Code Signing. For more information about signing your code image, see the Code Signing for Amazon
FreeRTOS Developer Guide and the Code Signing for Amazon FreeRTOS API Reference.

Note
The Code Signing for Amazon FreeRTOS feature is currently in beta. You can download the SDK
from https://tools.signer.aws.a2z.com/awssigner-tools.zip.

Monitoring Updates
The code deployment manager createDeployment API returns the job ID from the AWS IoT Jobs
service. You can use the job ID and the MQTT AWS IoT Jobs APIs to track the progress and status of the
OTA updates across the fleet of the devices.

DescribeJobExecution

Gets the details of a job execution. A job execution is an instance of a job running on a single device.
ListJobExecutionsForJob

Lists all job executions for a job.
ListJobExecutionsForThing

Gets the list of all job executions for a thing.

For more information, see AWS IoT Jobs API.

Amazon FreeRTOS Configuration Wizard User
Guide

Managing Amazon FreeRTOS Configurations
You can use the AWS IoT Device Management Console to manage software configurations and download
Amazon FreeRTOS software for your device. The Amazon FreeRTOS software is prequalified on a variety
of platforms. It includes the required hardware drivers, libraries, and example projects to help get you
started quickly. You can choose between predefined configurations or create custom configurations.

Predefined configurations are defined for the prequalified platforms:

• TI CC3220SF-LAUNCHXL
• STM32 IoT Discovery Kit
• NXP LPC54018 IoT Module
• Microchip Curiosity PIC32MZEF

70

http://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
http://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
http://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
http://docs.aws.amazon.com/signer/latest/api/Welcome.html
https://tools.signer.aws.a2z.com/awssigner-tools.zip
http://docs.aws.amazon.com/iot/latest/developerguide/jobs-api.html
https://console.aws.amazon.com/freertos

Amazon FreeRTOS User Guide
Downloading Amazon FreeRTOS from GitHub

• FreeRTOS Windows Simulator

The predefined configurations make it possible for you to get started quickly with the supported use
cases without thinking about which libraries are required. To use a predefined configuration, browse to
the Amazon FreeRTOS console, find the configuration you want to use, and then choose Download.

Custom configurations allow you to specify your hardware platform, integrated development platform
(IDE), compiler, and only those RTOS libraries you require. This leaves more space on your devices for
application code.

To create a custom configuration

1. Browse to the Amazon FreeRTOS console and choose Create new.
2. On the New Software Configuration page, choose Select a hardware platform, and choose one of

the prequalified platforms.
3. Choose the IDE and compiler you want use.
4. For the Amazon FreeRTOS libraries you require, choose Add Library. If you choose a library that

requires another library, it is added for you. If you want to choose more libraries, choose Add
another library.

5. In the Demo Projects section, enable one of the demo projects. This enables the demo in the project
files.

6. In Name required, type a name for your custom configuration.

Note
Do not use any personally identifiable information for your custom configuration name.

7. In Description, you can type a description for your custom configuration.
8. At the bottom of the page, choose Create and download to create and download your custom

configuration.

Deleting a Configuration
To delete an Amazon FreeRTOS configuration

1. Browse to the Amazon FreeRTOS console.
2. In the navigation pane, choose Software.
3. Under Amazon FreeRTOS Device Software, choose Configure download.
4. Choose the ellipsis next to the configuration you want to delete, and then choose Delete.

Downloading Amazon FreeRTOS from GitHub
Although we recommend that you download the Amazon FreeRTOS kernel and software libraries from
the Amazon FreeRTOS console, all Amazon FreeRTOS files are available on GitHub.

Amazon FreeRTOS Qualification Program
This section provides information for MCU vendors about the Amazon FreeRTOS qualification workflow,
which includes:

• Creating an Amazon FreeRTOS project.
• Porting Amazon FreeRTOS abstraction layers.

71

https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://console.aws.amazon.com/freertos
https://github.com/aws/amazon-freertos

Amazon FreeRTOS User Guide
What's in it for OEMs?

• Running tests.
• Submitting test results to the Amazon FreeRTOS team for final qualification.

What's in it for OEMs?
The Amazon FreeRTOS Qualification Program intends to give confidence to OEM/ODM developers that
by using a qualified microcontroller (MCU) from this program for their IoT device, they can run Amazon
FreeRTOS on the device without compatibility issues. It works with AWS IoT or AWS Greengrass. This
allows OEM/ODM developers to focus on the code for their device functionality.

Qualification Program for MCU Vendors
The Amazon FreeRTOS Qualification Program gives MCU vendors confidence that their qualified
MCUs are secure and interoperate with AWS IoT and AWS Greengrass. This means that the MCUs and
associated libraries meet the security, functionality, and performance requirements to work seamlessly
with AWS IoT and AWS Greengrass. A qualified MCU is included in the Amazon FreeRTOS console, where
customers can select it and download its libraries. These include Amazon FreeRTOS and board support
packages (BSPs) and drivers. Details of the qualified MCU, along with relevant links and the MCU vendor
company logo, are available on the Amazon FreeRTOS Partners web page. The rest of this FAQ describes
the steps to qualify your MCU and verify that your software (including drivers and BSPs) functionally
integrates with Amazon FreeRTOS software.

Contact Amazon
If you want to qualify an MCU, send a request to <freertos-qual@amazon.com>. A representative
from the qualification support team will scontact you and support you through the qualification steps.

Sign Up for the AWS Partner Network
The AWS Partner Network (APN) is the global partner program for AWS. It is focused on helping APN
Partners build successful AWS-based businesses or solutions by providing business, technical, marketing,
and go-to-market support. To find and register for the APN Partner program, see AWS Partner Network.

Jointly Agree on Terms and Conditions
After you become an APN Partner, you and AWS jointly review and agree on general terms and
conditions, schedules, and initiatives in the partnership. The agreement includes topics such as
the purpose of collaboration, alliance team, initiative development, marketing and collateral,
indemnification, limitations of liability, and other general terms. After you and AWS sign the agreement,
you can start the qualification workflow process.

Pass Qualification Test Suite
There are several steps to verify that your software (including drivers and BSPs) is functionally integrated
with Amazon FreeRTOS software. The goal of this process is to create an MCU development project that
successfully builds and runs a range of functional, performance, and security tests on your MCU.

The high-level steps are:

1. Download the latest version of the Amazon FreeRTOS source code.
2. Create a project using the target IDE and compiler that demonstrates the equivalent of a “Hello

World” example for the target MCU.

72

https://console.aws.amazon.com/freertos
https://partnercentral.awspartner.com/AWS_Partner_Application

Amazon FreeRTOS User Guide
Amazon FreeRTOS Qualified

3. Add Amazon FreeRTOS files and resources to the created project, and confirm the project still builds.
At this stage, the included TQP tests should build and run, but are expected to fail because they have
not yet been ported to your hardware.

4. Enable each Amazon FreeRTOS feature to work successfully on your MCU. This involves implementing
each hardware-dependent layer of the Amazon FreeRTOS feature abstractions. Test these
implementations and fix issues.

5. When all included tests pass, submit your results (test reports) and your microcontroller hardware to
Amazon to confirm the qualification process.

Amazon FreeRTOS Qualified
After your hardware passes the verification tests, it is considered Amazon FreeRTOS-qualified.
Information about your hardware will be displayed in the Amazon FreeRTOS console and the Amazon
FreeRTOS Getting Started page.

Supported Platforms
Texas Instruments CC3220SF-LAUNCHXL
The SimpleLink Wi-Fi CC3220SF-LAUNCHXL LaunchPad Development Kit includes the CC3220SF, a
single-chip wireless microcontroller (MCU) with ARM Cortex -M4 Core at 80 MHz, 1 MB Flash, 256 KB of
RAM, and enhanced security features. The on-chip Wi-Fi module offloads TLS and TCP/IP processing,
freeing up memory and compute for the application on the main microcontroller. For more information
about this platform, see, Texas Instruments CC3220SF-LAUNCHXL.

STMicroelectronics STM32L4 Discovery Kit – IoT Node
The STM32L4 IoT Discovery Kit (B-L475E-IOT01A) supports Wi-Fi and integrates additional sensors.
The kit has an STM32L4 Series MCU based on ARM Cortex -M4 core at 80 MHz with 1 MB of flash
memory and 128 KB of SRAM, and Wi-Fi module Inventek ISM43362-M3G-L44. The Wi-Fi module
offloads TCP/IP processing from the MCU. The interface to the Wi-Fi module for this kit has not yet
been optimized for use with Amazon FreeRTOS, so there are limitations on its use. We recommend
using the Secure Sockets APIs from low-priority tasks only, and to limit transmit throughput. Revisions
to improve this interface are planned in the future. For more information about this platform, see
STMicroelectronicsSTM32L4Discovery Kit IoT Node.

NXP LPC54108 IoT Module
The LPC54018 IoT Module from NXP includes an LPC54018 MCU with a 180MHz ARM Cortex-M4
core with 360 KB of SRAM, 128 MB of Quad-SPI Flash (Macronix MX25L12835FM2), and a Longsys
IEEE802.11b/g/n Wi-Fi module based on Qualcomm GT1216. The Wi-Fi module offloads TCP/IP
processing from the MCU. The LPC54018 IoT Module requires a debugger and J-Link connector (available
in the NXP Direct store) or a baseboard. For more information about this platform, see NXP LPC54018
IoT Module.

Microchip Curiosity PIC32MZEF
The Curiosity PIC32MZEF development board from Microchip includes a PIC32MZEF MCU with a 200
MHz 32-bit MIPS M-class core with 2 MB of Flash and 512 KB of SRAM. For users who need to use
Ethernet, the LAN8720A Ethernet PHY daughter board can be connected to the Curiosity PIC32MZEF
development board. For more information about this platform, see Microchip PIC32MZ2048EFM100.

73

https://console.aws.amazon.com/freertos
http://www.ti.com/tool/cc3220sf-launchxl
http://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
https://www.nxp.com/support/developer-resources/reference-designs/lpc54018-iot-solution-with-amazon-freertos:IoT-Solution-with-Amazon-FreeRTOS?tid=vanLPC-AWS-Module
https://www.nxp.com/support/developer-resources/reference-designs/lpc54018-iot-solution-with-amazon-freertos:IoT-Solution-with-Amazon-FreeRTOS?tid=vanLPC-AWS-Module
https://www.microchip.com/wwwproducts/en/LAN8720A
http://www.microchip.com/wwwproducts/en/PIC32MZ2048EFM100

Amazon FreeRTOS User Guide
Bootloader

Amazon FreeRTOS Porting Guide
This porting guide walks you through modifying the Amazon FreeRTOS software package to work on
boards that are not Amazon FreeRTOS qualified. Amazon FreeRTOS is designed to let you choose only
those libraries required by your board or application. The MQTT, Shadow, and Greengrass libraries are
designed to be compatible with most devices as-is, so there is no porting guide for these libraries.

For information about porting FreeRTOS kernel, see FreeRTOS Kernel Porting Guide.

Topics
• Bootloader (p. 74)
• Logging (p. 74)
• Connectivity (p. 75)
• Security (p. 76)
• Using Custom Libraries with Amazon FreeRTOS (p. 78)
• OTA Portable Abstraction Layer (p. 78)

Bootloader
The bootloader must be dual-bank capable and include logic for checking a CRC and app version in the
image header. The bootloader boots the newest image, based on the app version in the header, provided
that the CRC is valid. If the CRC check fails, the bootloader should zero out the header as an optimization
for future reboots.

Since the OTA v1 agent performs cryptographic signature verification, we suggest that v1 bootloaders
not link to cryptographic code, so as to be as small as possible. You must provide a compliant bootloader.

Logging
Amazon FreeRTOS provides a thread-safe logging task that can be used by calling the configPRINTF
function. configPRINTF is designed to behave like printf. To port configPRINTF, initialize your
communications peripheral, and define the configPRINT_STRING macro so that it takes an input string
and displays it on your preferred output.

Logging Configuration
configPRINT_STRING should be defined for your board’s implementation of logging. Current examples
use a UART serial terminal, but other interfaces can also be used.

#define configPRINT_STRING(x)

Use configLOGGING_MAX_MESSAGE_LENGTH to set the maximum number of bytes to be printed.
Messages longer than this length are truncated.

#define configLOGGING_MAX_MESSAGE_LENGTH

74

http://www.freertos.org/FreeRTOS-porting-guide.html

Amazon FreeRTOS User Guide
Connectivity

When configLOGGING_INCLUDE_TIME_AND_TASK_NAME is set to 1, all printed messages are
prepended with additional debug information (the message number, FreeRTOS tick count, and task
name).

#define configLOGGING_INCLUDE_TIME_AND_TASK_NAME 1

vLoggingPrintf is the name of the FreeRTOS thread-safe printf call. You do not need to change this
value to use AmazonFreeRTOS logging.

#define configPRINTF(X) vLoggingPrintf X

Connectivity
You must first configure your connectivity peripheral. You can use Wi-Fi, Bluetooth, Ethernet, or other
connectivity mediums. At this time, only a Wi-Fi management API is defined for board ports, but if you
are using Ethernet, the FreeRTOS TCP/IP software can provide a good place to start.

Wi-Fi Management
The Wi-Fi management library supports network connectivity following the 802.11 (a/b/n) protocol. If
your hardware does not support Wi-Fi, you do not need to port this library.

The functions that must be ported are listed in the lib/wifi/portable/<vendor>/<platform>/
aws_wifi.c file. You can find a detailed explanation for each public interface in lib/include/
aws_wifi.h.

The following functions must be ported:

WiFiReturnCode_t WIFI_On(void);
WIFIReturnCode_t WIFI_Off(void);
WiFiReturnCode_t WIFI_ConnectAP(const WiFiNetworkParams_t * const pxNetworkParams);
WiFiReturnCode_t WIFI_Disconnect(void);
WiFiReturnCode_t WIFI_Reset(void);
WiFiReturnCode_t WIFI_Scan(WiFiScanResult_t * pxBuffer, uint8_t uxNumNetworks);

Sockets
The sockets library supports TCP/IP network communication between your board and another node
in the network. The sockets APIs are based on the Berkeley sockets interface, but also include a secure
communication option. At this time, only client APIs are supported. We recommend that you port the
TCP/IP functionality first, before you add the TLS functionality.

Libraries for MQTT, Shadow, and Greengrass all make calls into the sockets layer. A successful port of the
sockets layer allows the protocols built on sockets to just work.

Major Differences from Berkeley Sockets Implementation

Security

The sockets interface must be configured to use TLS for secure communication. The SetSockOpt
command has a couple of nonstandard options that must be implemented to work with
AmazonFreeRTOS examples.

75

http://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_TCP/index.html

Amazon FreeRTOS User Guide
Security

SOCKETS_SO_REQUIRE_TLS
SOCKETS_SO_SERVER_NAME_INDICATION
SOCKETS_SO_TRUSTED_SERVER_CERTIFICATE

For information about these nonstandard options, see the secure sockets documentation (p. 61).
For information about porting TLS and cryptographic operations, see the TLS (p. 62) and Public Key
Cryptography Standard #11 (p. 63) sections.

Error Codes

The SOCKETS library returns error codes from the API (rather than setting a global errno). All error codes
returned must be negative values.

The public interfaces that must be ported are listed in lib/secure_sockets/portable/<vendor>
/<platform>/aws_secure_sockets.c.

A detailed explanation for each public interface can be found in lib/include/
aws_secure_sockets.h.

If you are using TLS based on mbed TLS, you can save refactoring effort by implementing network
send and network receive functions that can be registered with the TLS layer for sending and receiving
plaintext or encrypted buffers.

Security
Amazon FreeRTOS has two libraries that work together to provide platform security: TLS and PKCS#11.
Amazon FreeRTOS provides a software security solution built on mbed TLS (a third-party TLS library).
The TLS API uses mbed TLS to encrypt and authenticate network traffic. PKCS#11 provides an standard
interface to handle cryptographic material and replace software cryptographic operations with
implementations that fully use the hardware.

TLS
If you choose to use an mbed TLS-based implementation, you can use aws_tls.c as-is, provided that
PKCS#11 is implemented.

The public interfaces of this library and a detailed explanation for each TLS interface are listed in
lib/include/aws _tls.h. The Amazon FreeRTOS implementation of the TLS library is in lib/
tls/aws_tls.c. If you decide to use your own TLS support, you can either implement the TLS public
interfaces and plug them into the sockets public interfaces, or you can directly port the sockets library
using your own TLS interfaces.

The mbedtls_hardware_poll function provides randomness for the deterministic random bit
generator. For security, no two boards should provide identical randomness, and a board must not
provide the same random value repeatedly, even if the board is reset. Examples of implementations
for this function can be found in ports using mbed TLS at demos\<vendor>\<platform>\common
\application_code\<vendor code> \aws_entropy_hardware_poll.c

Using TLS Libraries Other Than mbed TLS
If you are porting another TLS library to Amazon FreeRTOS, make sure that a compatible TLS cipher
suite is implemented in your port. For more information, see Cipher Suites Compatible with AWS IoT. The
following cipher suites are compatible with AWS Greengrass devices:

• TLS_RSA_WITH_AES_128_GCM_SHA256

76

http://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html

Amazon FreeRTOS User Guide
PKCS#11

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

• TLS_RSA_WITH_AES_256_GCM_SHA384

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA (not recommended)
• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (not recommended)
• TLS_RSA_WITH_AES_128_CBC_SHA (not recommended)
• TLS_RSA_WITH_AES_256_CBC_SHA (not recommended)

Due to attacks on SHA1, we recommend that you use SHA256 or SHA384 for Amazon FreeRTOS
connections.

PKCS#11
Amazon FreeRTOS implements a PKCS#11 standard for cryptographic operations and key storage. The
header file for PKCS#11 is an industry standard. To port PKCS#11, you must implement functions to read
and write credentials to and from non-volatile memory (NVM).

The functions you need to implement are listed in lib/third_party/pkcs11/pkcs11f.h. The
implementation of the public interfaces is located in: lib/pkcs11/portable/vendor/board/
pkcs11.c.

The following functions are the minimum required to support TLS client authentication in Amazon
FreeRTOS:

• C_GetFunctionList

• C_Initialize

• C_GetSlotList

• C_OpenSession

• C_FindObjectsInit

• C_FindObjects

• C_FindObjectsFinal

• C_GetAttributeValue

• C_FindObjectsInit

• C_FindObjects

• C_FindObjectsFinal

• C_GetAttributeValue

• C_SignInit

• C_Sign

• C_CloseSession

• C_Finalize

For a general porting guide, see the open standard, PKCS #11 Cryptographic Token Interface Base
Specification.

Two additional non-PKCS#11 standard functions must be implemented for keys and certificates to
survive power cycle:

prvSaveFile

Writes the client (device) private key and certificate to memory. If your NVM is susceptible to
damage from write cycles, you might want to use an additional variable to record whether the device
private key and device certificate have been initialized.

77

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html

Amazon FreeRTOS User Guide
Using Custom Libraries with Amazon FreeRTOS

prvReadFile

Retrieves either the device private key or device certificate from NVM into RAM for use by the TLS
library.

Using Custom Libraries with Amazon FreeRTOS
All Amazon FreeRTOS libraries can be replaced with custom developed libraries. All custom libraries must
conform to the API of the Amazon FreeRTOS library they replace.

OTA Portable Abstraction Layer
Amazon FreeRTOS defines an OTA portable abstraction layer (PAL) in order to ensure that the OTA
library is useful on a wide variety of hardware. The OTA PAL interface is listed below.

prvAbort

Aborts an OTA update.
prvCreateFileForRx

Creates a new file to store the data chunks as they are received.
prvCloseFile

Closes the specified file. This may authenticate the file if it is marked as secure.
prvCheckFileSignature

Verifies the signature of the specified file. For device file systems with built-in signature verification
enforcement, this may be redundant and should therefore be implemented as a no-op.

prvWriteBlock

Writes a block of data to the specified file at the given offset. Returns the number of bytes written
on success or negative error code.

prvActivateNewImage

Activates the new firmware image. For some ports, this function may not return.
prvSetImageState

Does whatever is required by the platform to accept or reject the last firmware image (or bundle).
Refer to the platform implementation to determine what happens on your platform.

prvReadAndAssumeCertificate

Reads the specified signer certificate from the file system and returns it to the caller. This is optional
on some platforms.

78

	Amazon FreeRTOS
	Table of Contents
	What Is Amazon FreeRTOS?
	The FreeRTOS Kernel
	Amazon FreeRTOS Libraries
	Amazon FreeRTOS Configuration Wizard
	Over-the-Air Updates (Beta)
	Amazon FreeRTOS Qualification Program
	Development Workflow

	Getting Started with Amazon FreeRTOS
	Prerequisites
	AWS Account and Permissions
	Amazon FreeRTOS Supported Hardware Platforms
	Registering Your MCU Board with AWS IoT

	Getting Started with the Texas Instruments CC3220SF-LAUNCHXL
	Setting Up Your Environment
	Download and Build Amazon FreeRTOS
	Download Amazon FreeRTOS
	Import the Amazon FreeRTOS Sample Code into TI Code Composer
	Import the Amazon FreeRTOS Sample Code into IAR Embedded Workbench
	Configure Your Project
	Configure Your AWS IoT Credentials

	Run the FreeRTOS Samples
	Troubleshooting

	Getting Started with the STMicroelectronics STM32L4 Discovery Kit IoT Node
	Setting Up Your Environment
	Download and Build Amazon FreeRTOS
	Download Amazon FreeRTOS
	Import the Amazon FreeRTOS Sample Code into the STM32 System Workbench
	Configure Your Project
	Configure Your AWS IoT Credentials

	Run the FreeRTOS Samples

	Getting Started with the NXP LPC54018 IoT Module
	Setting Up Your Environment
	Connecting a JTAG Debugger
	Download and Build Amazon FreeRTOS
	Download Amazon FreeRTOS
	Import the Amazon FreeRTOS Sample Code into Your IDE
	Configure Your Project
	Configure Your AWS IoT Credentials

	Run the FreeRTOS Samples
	Troubleshooting

	Getting Started with the Microchip Curiosity PIC32MZEF
	Setting Up the Microchip Curiosity PIC32MZEF Hardware
	Setting Up Your Environment
	Download and Build Amazon FreeRTOS
	Download Amazon FreeRTOS
	Open the Amazon FreeRTOS Demo Application in the MPLAB IDE
	Configure Your Project
	Configure Your AWS IoT Credentials

	Run the FreeRTOS Samples
	Troubleshooting

	Getting Started with the FreeRTOS Windows Simulator
	Setting Up Your Environment
	Download and Build Amazon FreeRTOS
	Download Amazon FreeRTOS
	Load the Amazon FreeRTOS Sample Code into Visual Studio
	Configure Your Project
	Configure Your Network Interface
	Configure Your AWS IoT Endpoint
	Configure Your AWS IoT Credentials

	Run the FreeRTOS Samples

	Amazon FreeRTOS Demo Projects
	Navigating the Demo Applications
	Directory and File Organization
	Configuration Files

	Device Shadow Demo Application
	Greengrass Discovery Demo Application
	OTA Demo Application
	OTA Update Prerequisites
	Create an Amazon S3 Bucket to Store a Firmware Image
	Grant OTA Update Permissions to Your AWS User Account
	Creating an OTA Update Service Role
	Creating an OTA User Policy
	Granting Access to the Code Signing Service

	Command Line Tools

	Using the OTA Update Demo Application on the TI CC3200SF-LAUNCHXL
	Create a Code-Signing Certificate and Private Key
	Creating Code-Signing Certificates for Texas Instruments CC3220SF-LAUNCHXL

	Installing the Initial Firmware
	Creating a Firmware Update
	Uploading Updated Firmware
	Create an OTA Update Job

	Using the OTA Update Demo Application on the Microchip Curiosity PIC32MZEF
	Creating Code-Signing Certificates
	Installing the Initial Firmware
	Creating a Firmware Update
	Uploading Updated Firmware
	Creating an OTA Update Job

	Amazon FreeRTOS Developer Guide
	Amazon FreeRTOS Architecture
	FreeRTOS Kernel Fundamentals
	FreeRTOS Kernel Scheduler
	Memory Management
	Kernel Memory Allocation
	Application Memory Management

	Inter-task Coordination
	Queues
	Semaphores and Mutexes
	Direct-to-Task Notifications
	Stream Buffers
	Sending Data
	Receiving Data

	Message Buffers
	Sending Data
	Receiving Data

	Software Timers
	Low Power Support

	FreeRTOS Libraries
	Cloud Connectivity
	MQTT
	Callback
	Subscription Management
	MQTT Task Wakeup
	Major Configurations

	Device Shadows
	Prerequisites For Using the Device Shadows API
	Using the Device Shadow APIs

	Greengrass Connectivity
	Prerequisites
	Greengrass Workflow
	How to Use the Greengrass API

	Amazon FreeRTOS Security
	Secure Sockets
	Secure Sockets Ports
	STM32 IoT Discovery Kit Secure Sockets Port
	Sockets_Connect
	Sockets_SetSockOpt
	SOCKETS_Shutdown

	TI CC3220SF-LAUNCHXL Secure Sockets Port
	Sockets_Connect
	Sockets_SetSockOpt
	SOCKETS_Send
	SOCKETS_Shutdown

	Transport Layer Security
	Public Key Cryptography Standard #11
	
	Provisioning API
	Client Authentication
	Cleanup

	Asymmetric Cryptosystem Support

	FreeRTOS Wi-Fi Interface
	Setup, Provisioning, and Configuration
	Connection
	Security
	Power Management
	Network Profiles
	Network Utilities

	OTA Agent Library

	Amazon FreeRTOS Over-the-Air Updates
	OTA Workflow
	OTA Security
	Code Signing for Amazon FreeRTOS

	Monitoring Updates

	Amazon FreeRTOS Configuration Wizard User Guide
	Managing Amazon FreeRTOS Configurations
	Deleting a Configuration

	Downloading Amazon FreeRTOS from GitHub
	Amazon FreeRTOS Qualification Program
	What's in it for OEMs?
	Qualification Program for MCU Vendors
	Contact Amazon
	Sign Up for the AWS Partner Network
	Jointly Agree on Terms and Conditions
	Pass Qualification Test Suite
	Amazon FreeRTOS Qualified

	Supported Platforms
	Texas Instruments CC3220SF-LAUNCHXL
	STMicroelectronics STM32L4 Discovery Kit – IoT Node
	NXP LPC54108 IoT Module
	Microchip Curiosity PIC32MZEF

	Amazon FreeRTOS Porting Guide
	Bootloader
	Logging
	Logging Configuration

	Connectivity
	Wi-Fi Management
	Sockets
	Major Differences from Berkeley Sockets Implementation
	Security
	Error Codes

	Security
	TLS
	Using TLS Libraries Other Than mbed TLS

	PKCS#11

	Using Custom Libraries with Amazon FreeRTOS
	OTA Portable Abstraction Layer

