Power MOSFET

-20 V, -780 mA, Single P-Channel with ESD Protection, SOT-723

Features

- P-channel Switch with Low R_{DS(on)}
- 44% Smaller Footprint and 38% Thinner than SC-89
- Low Threshold Levels Allowing 1.5 V R_{DS(on)} Rating
- Operated at Low Logic Level Gate Drive
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Load/Power Switching
- Interfacing, Logic Switching
- Battery Management for Ultra Small Portable Electronics

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	-20	٧
Gate-to-Source Volt	age		V_{GS}	± 6	V
Continuous Drain	Steady State	T _A = 25°C	I _D	-780	mA
Current (Note 1)	State	T _A = 85°C		-570	
	t ≤ 5 s	T _A = 25°C		-870	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	450	mW
	t ≤ 5 s			550	
Continuous Drain	Steady	T _A = 25°C	I _D	-660	mA
Current (Note 2)	State	T _A = 85°C		-480	
Power Dissipation (Note 2)		T _A = 25°C	P _D	310	mW
Pulsed Drain Cur- rent	t _p = 10 μs		I _{DM}	-1.2	Α
Operating Junction and Storage Temperature		T _J , T _{STG}	–55 to 150	°C	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- 2. Surface mounted on FR4 board using the minimum recommended pad size

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D Max	
-20 V	0.38 Ω @ -4.5 V	–780 mA	
	0.52 Ω @ -2.5 V	-660 mA	
	0.70 Ω @ -1.8 V	–100 mA	
	0.95 Ω @ -1.5 V	–100 mA	

SOT-723 (3-LEAD)

- 1 Gate
- 2 Source
- 3 Drain

SOT-723 CASE 631AA STYLE 5

MARKING DIAGRAM

KD = Specific Device CodeM = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTK3139PT1G		4000 / Tape & Reel
NTK3139PT1H	SOT-723	4000 / Tape & Nee
NTK3139PT5G	Pb-Free	8000 / Tape & Reel
NTK3139PT5H		6000 / Tape & Neel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	280	°C/W
Junction-to-Ambient - t = 5 s (Note 3)	$R_{ hetaJA}$	228	
Junction-to-Ambient - Steady State Minimum Pad (Note 4)	$R_{ hetaJA}$	400	

^{3.} Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
4. Surface mounted on FR4 board using the minimum recommended pad size

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ specified)$

OFF CHARACTERISTICS V(BR)DSS V _{GS} = 0 V, I _D = −250 μA −20 V V Drain-to-Source Breakdown Voltage Temperature Coefficient V(BR)DSS/TJ I _D = −250 μA, Reference to 25°C 1-16.5 mV/°C Zero Gate Voltage Drain Current I _{DSS} V _{GS} = 0 V, V _{GS} = ±4.5 V 1 -16.5 mV/°C Gate -to-Source Leakage Current I _{GSS} V _{DS} = 0 V, V _{GS} = ±4.5 V 1 -2.0 μΛ ON CHARACTERISTICS (Note 5) Gate Threshold Voltage V _{GS} (TH) V _{GS} = V _{DS} , I _D = −250 μA -0.45 1 -1.2 V Negative Threshold Temperature Coefficient V _{GS} (TH)/TJ V _{GS} = -4.5 V, I _D = −780 mA 0.38 0.48 0.49	Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
Vigario Vi	OFF CHARACTERISTICS							
Voltage Temperature Coefficient IDSS VGS = 0 V, VGS = -16V TJ = 25°C JL = -2.0 μΛ Gate - to - Source Leakage Current IDSS VGS = 0 V, VGS = ±4.5 V JL = 125°C JL = 1.0 Gate - to - Source Leakage Current IGSS VGS = 0 V, VGS = ±4.5 V JL = 125°C JL = 1.0 ON CHARACTERISTICS (Note 5) Summarize		V _{(BR)DSS}	V_{GS} = 0 V, I_D = -250 μA		-20			V
A		V _{(BR)DSS} /T _J	I _D = -250 μA, Reference	e to 25°C		-16.5		mV/°C
Vas = -16V T _J = 125°C -2.0	Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			-1.0	
ON CHARACTERISTICS (Note 5) VGS(TH) VGS = VDS, ID = -250 μA -0.45 -1.2 V Regative Threshold Temperature Coefficient VGS(TH)/TJ VGS = -4.5 V, ID = -780 mA 0.38 0.48 0.48 0.52 0.67 0.67 0.62 0.67 0.62 0.67 0.67 0.62 0.67 0.69 0			$V_{DS} = -16V$	T _J = 125°C			-2.0	μΑ
	Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 2$	4.5 V			±2.0	μΑ
Negative Threshold Temperature Coefficient V _{GS(TH)} /T _J 2.4 mV/°C Drain-to-Source On Resistance Parameter Coefficient V _{GS} = -4.5 V, I _D = -780 mA 0.38 0.48 V _{GS} = -2.5 V, I _D = -660 mA 0.52 0.67 V _{GS} = -1.8 V, I _D = -100 mA 0.70 0.95 V _{GS} = -1.5 V, I _D = -100 mA 0.95 2.20 Forward Transconductance 9 _{FS} V _{DS} = -10 V, I _D = -540 mA 1.2 S CHARGES, CAPACITANCES AND GATE RESISTANCE Input Capacitance C _{ISS} V _{GS} = 0 V, f = 1 MHz, V _{DS} = -16 V 15 25 pF Output Capacitance C _{ISS} V _{GS} = 0 V, f = 1 MHz, V _{DS} = -16 V 15 25 pF SWITCHING CHARACTERISTICS, V _{GS} = 4.5 V (Note 6) Turn On Delay Time t _d (ON) V _{GS} = -4.5 V, V _{DS} = -10 V, I _D = -540 M 9.0 15 5.8 15 15 25 9.0 15 15 25 9.0 15 15 25 9.0 15 15 25 15 15 25 15 25 15 <td>ON CHARACTERISTICS (Note 5)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ON CHARACTERISTICS (Note 5)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = -25$	50 μΑ	-0.45		-1.2	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		V _{GS(TH)} /T _J				2.4		mV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-to-Source On Resistance		$V_{GS} = -4.5 \text{ V}, I_D = -7$	'80 mA		0.38	0.48	Ω
$V_{GS} = -1.5 \text{ V, } I_D = -100 \text{ IIIA} & 0.70 & 0.95 \\ V_{GS} = -1.5 \text{ V, } I_D = -100 \text{ IIIA} & 0.95 & 2.20 \\ \hline \\ V_{GS} = -1.5 \text{ V, } I_D = -100 \text{ IIIA} & 0.95 & 2.20 \\ \hline \\ Forward Transconductance & g_{FS} & V_{DS} = -10 \text{ V, } I_D = -540 \text{ mA} & 1.2 & S \\ \hline \\ \textbf{CHARGES, CAPACITANCES AND GATE RESISTANCE} \\ \hline \\ Input Capacitance & C_{ISS} & & 113 & 170 \\ \hline \\ Output Capacitance & C_{OSS} & V_{GS} = 0 \text{ V, } f = 1 \text{ MHz, } V_{DS} = -16 \text{ V} & 15 & 25 \\ \hline \\ \textbf{Reverse Transfer Capacitance} & C_{RSS} & & 9.0 & 15 \\ \hline \\ \textbf{SWITCHING CHARACTERISTICS, } V_{GS} = 4.5 \text{ V (Note 6)} \\ \hline \\ \textbf{Turn On Delay Time} & t_{d(ON)} & & 9.0 & & \\ \hline \textbf{Rise Time} & t_f & & & 9.0 & & \\ \hline \textbf{TurnOff Delay Time} & t_{d(OFF)} & & & & 5.8 & & \\ \hline \textbf{Fall Time} & t_f & & & & & \\ \hline \textbf{DEAIN SOURCE DIODE CHARACTERISTICS} \\ \hline \\ \textbf{Forward Diode Voltage} & V_{SD} & V_{GS} = 0 \text{ V, } I_S = -350 \text{ mA} & T_J = 25^{\circ}\text{C} & & -0.8 & -1.2 & \text{V} \\ \hline \textbf{Reverse Recovery Time} & t_{RR} & & & & & \\ \hline \textbf{Charge Time} & t_b & & & & & \\ \hline \textbf{Lincherge Time} & t_b & & & & & \\ \hline \textbf{Lincherge Time} & t_b & & & & & \\ \hline \textbf{Lincherge Time} & t_b & & & & & \\ \hline \textbf{Lincherge Time} & t_b & & & & & \\ \hline \textbf{Lincherge Time} & t_b & & & & \\ \hline \textbf{Lincherge Time} & t_b & & & & \\ \hline \textbf{Lincherge Time} & & & & & \\ \hline \textbf{Lincherge Time} & & & & & \\ \hline \textbf{Lincherge Time} & & & & & \\ \hline \textbf{Lincherge Time} & & & & & \\ \hline \textbf{Lincherge Time} & & & & & \\ \hline \textbf{Lincherge Time} & & & & & \\ \hline \textbf{Lincherge Time} & & & & & \\ \hline \textbf{Lincherge Time} & & & \\ \hline $			$V_{GS} = -2.5 \text{ V}, I_D = -6$	660 mA		0.52	0.67	
Forward Transconductance g_{FS} $V_{DS} = -10 \text{ V}, I_D = -540 \text{ mA}$ 1.2 S CHARGES, CAPACITANCES AND GATE RESISTANCE Input Capacitance C_{ISS} $V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}, V_{DS} = -16 \text{ V}$ 113 170 pF Output Capacitance C_{OSS} $V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}, V_{DS} = -16 \text{ V}$ 15 25 pF Reverse Transfer Capacitance C_{RSS} 9.0 15 15 25 pF SWITCHING CHARACTERISTICS, $V_{GS} = 4.5 \text{ V}$ (Note 6) Volume 100 9.0 9.0 15 15 25 pF Turn On Delay Time t_f $t_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, V_{$		H _{DS(on)}	V _{GS} = -1.8 V, I _D = -1	00 mA		0.70	0.95	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{GS} = -1.5 V, I _D = -1	00 mA		0.95	2.20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Forward Transconductance	9 _{FS}	$V_{DS} = -10 \text{ V}, I_{D} = -540 \text{ mA}$			1.2		S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHARGES, CAPACITANCES AND G	ATE RESISTAN	ICE					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, } V_{DS} = -16 \text{ V}$			113	170	
	Output Capacitance	C _{OSS}				15	25	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{RSS}				9.0	15	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTICS, V	GS = 4.5 V (Note	e 6)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn On Delay Time	t _{d(ON)}				9.0		
Fall Time $t_f = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	t _r	$V_{GS} = -4.5 \text{ V}, V_{DS} = -4.5 \text{ V}$	-10 V,		5.8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TurnOff Delay Time	t _{d(OFF)}	$I_D = -200 \text{ mA}, R_G = 10 \Omega$			32.7		ns -
Forward Diode Voltage V_{SD} $V_{GS} = 0 \text{ V}, I_S = -350 \text{ mA}$ $T_J = 25^{\circ}\text{C}$ -0.8 -1.2 V Reverse Recovery Time t_{RR} 13.2 ns Charge Time t_a $V_{GS} = 0 \text{ V}, d_{ SD}/d_t = 100 \text{ A}/\mu\text{s}, I_S = -1.0 \text{ A}, V_{DD} = -20 \text{ V}$ 1.4	Fall Time	t _f				20.3		
Reverse Recovery Time t_{RR} 13.2 ns Charge Time t_a $V_{GS} = 0 \text{ V}, d_{ISD}/d_t = 100 \text{ A}/\mu\text{s}, \\ I_S = -1.0 \text{ A}, V_{DD} = -20 \text{ V}$ 1.4	DRAIN SOURCE DIODE CHARACTERISTICS							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = -350 \text{ mA}$	$T_J = 25^{\circ}C$		-0.8	-1.2	V
Discharge Time $t_b = \frac{V_{GS} - 0.7 \text{ Mps}}{I_S = -1.0 \text{ A}, V_{DD} = -20 \text{ V}} = 1.4$	Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, $d_{ SD}/d_t$ = 100 A/ μ s, I_S = -1.0 A, V_{DD} = -20 V			13.2		ns
	Charge Time	t _a				11.8		
Reverse Recovery Charge Q _{RR} 5.0 nC	Discharge Time	t _b				1.4		
	Reverse Recovery Charge	Q_{RR}				5.0		nC

^{5.} Pulse Test: pulse width = 300 μ s, duty cycle = 2% 6. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

Figure 9. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

SOT-723 CASE 631AA ISSUE D

RECOMMENDED SOLDERING FOOTPRINT*

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.45	0.50	0.55	
b	0.15	0.21	0.27	
b1	0.25	0.31	0.37	
С	0.07	0.12	0.17	
D	1.15	1.20	1.25	
Е	0.75	0.80	0.85	
е	0.40 BSC			
ΗE	1.15	1.20	1.25	
L	0.29 REF			
L2	0.15	0.20	0.25	

STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opport

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative