

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

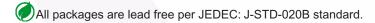
March 2008

NC7S08

TinyLogic® HS 2-Input AND Gate

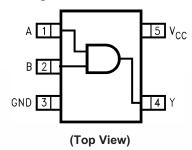
Features

- Space saving SOT23 or SC70 5-lead package
- Ultra small MicroPak™ Pb-Free leadless package
- High Speed; t_{PD} 3.5ns typ
- Low Quiescent Power; I_{CC} < 1µA
- Balanced Output Drive; 2mA I_{OL}, –2mA I_{OH}
- Broad V_{CC} Operating Range; 2V–6V
- Balanced Propagation Delays
- Specified for 3V operation

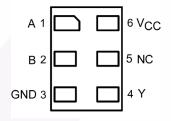

General Description

The NC7S08 is a single 2-Input high performance CMOS AND Gate. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation over a broad V_{CC} range. ESD protection diodes inherently guard both inputs and output with respect to the V_{CC} and GND rails. Three stages of gain between inputs and outputs assures high noise immunity and reduced sensitivity to input edge rate.

Ordering Information


Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7S08M5X	MA05B	7S08	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7S08P5X	MAA05A	S08	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
NC7S08L6X	MAC06A	PP	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.



Connection Diagram

Pin Assignments for SC70 and SOT23

Pad Assignments for MicroPak

(Top Thru View)

Logic Symbol

IEEE/IEC

Function Table

$$Y = AB$$

Inp	Output	
Α	В	Y
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

H = HIGH Logic Level

L = LOW Logic Level

Pin Description

Pin Names	Description
A, B	Inputs
Υ	Output
NC	No Connect

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current @ $V_{IN} \le -0.5V$ @ $V_{IN} \ge V_{CC} +0.5V$	–20mA +20mA
V _{IN}	DC Input Voltage	-0.5V to V _{CC} +0.5V
I _{OK}	DC Output Diode Current @ V _{OUT} < -0.5V @ V _{OUT} > V _{CC} +0.5V	–20mA +20mA
V _{OUT}	DC Output Voltage	-0.5V to V _{CC} + 0.5V
I _{OUT}	DC Output Sourceor Sink Current	±12.5mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±25mA
T _{STG}	Storage Temperature	−65°C to +150°C
T _J	Junction Temperature	150°C
T _L	Lead Temperature (Soldering, 10 seconds)	260°C
P _D	Power Dissipation @ +85°C SOT23-5 SC70-5	200mW 150mW

Recommended Operating Conditions⁽¹⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

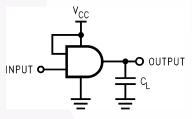
Symbol	Parameter	Rating
V _{CC}	Supply Voltage	2.0V to 6.0V
V _{IN}	Input Voltage	0V to V _{CC}
V _{OUT}	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to +85°C
t _r , t _f	Input Rise and Fall Time V _{CC} @ 2.0V V _{CC} @ 3.0V V _{CC} @ 4.5V V _{CC} @ 6.0V	Ons to 1000ns Ons to 750ns Ons to 500ns Ons to 400ns
θ _{JA}	Thermal Resistance SOT23-5 SC70-5	300°C/W 425°C/W

Notes:

1. Unused inputs must be held HIGH or LOW. They may not float.

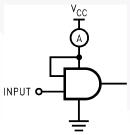
DC Electrical Characteristics

				T,	T _A = +25°C			–40°C 85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Units
V _{IH}	HIGH Level Input	2.0		1.50			1.50		V
	Voltage	3.0-6.0		0.7 x V _{CC}			0.7 x V _{CC}		
V _{IL}	LOW Level Input	2.0				0.50		0.50	V
	Voltage	3.0-6.0				0.3 x V _{CC}		0.3 x V _{CC}	
V _{OH}	HIGH Level Output	2.0	$I_{OH} = -20\mu A$,	1.90	2.0		1.90		V
	Voltage	3.0	$V_{IN} = V_{IH}$	2.90	3.0		2.90		
		4.5		4.40	4.5		4.40		
		6.0		5.90	6.0		5.90		
		3.0	$V_{IN} = V_{IH},$ $I_{OH} = -1.3\text{mA}$	2.68	2.85		2.63		
		4.5	$V_{IN} = V_{IH},$ $I_{OH} = -2mA$	4.18	4.35		4.13		
		6.0	$V_{IN} = V_{IH},$ $I_{OH} = -2.6 \text{mA}$	5.68	5.85		5.63		
V _{OL}	LOW Level Output	2.0	$I_{OL} = 20\mu A$		0.0	0.10		0.10	V
	Voltage	3.0	$V_{IN} = V_{IL}$		0.0	0.10	\	0.10	
		4.5			0.0	0.10		0.10	
		6.0			0.0	0.10		0.10	
		3.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $I_{OH} = 1.3\text{mA}$		0.1	0.26		0.33	
		4.5	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $I_{OL} = 2\text{mA}$		0.1	0.26		0.33	
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $I_{OL} = 2.6 \text{mA}$		0.1	0.26		0.33	
I _{IN}	Input Leakage Current	6.0	$V_{IN} = V_{CC}$, GND			±0.1		±1.0	μA
I _{CC}	Quiescent Supply Current	6.0	$V_{IN} = V_{CC}$, GND			1.0		10.0	μA


AC Electrical Characteristics

					T _A = +25°C			-40°C 85°C		Figure
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Units	Number
t _{PLH} , t _{PHL}	Propagation Delay	5.0	C _L = 15pF		3.5	15			ns	Figure 1
		2.0	C _L = 50pF		20	100		125		Figure 3
		3.0			11	27		35		
		4.5		1	8	20		25		
		6.0			7	17		21		
t _{TLH} , t _{THL}	Output Transition	5.0	C _L = 15pF		3.0	10			ns	Figure 1
	Time	2.0	C _L = 50pF		25	125		155		Figure 3
		3.0			16	35		45		
		4.5			11	25		31		
		6.0			9	21		26		
C _{IN}	Input Capacitance	Open			2	10		10	pF	
C _{PD}	Power Dissipation Capacitance	5.0	(2)		6				pF	Figure 2

Note:


2. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}static)$.

AC Loading and Waveforms

C_L includes load and stray capacitance Input PRR = 1.0 MHz; $t_W = 500 \text{ ns}$

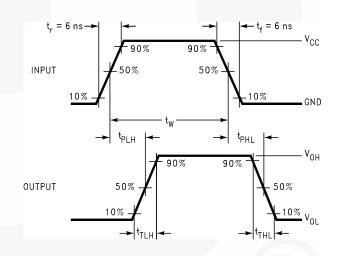
Figure 1. AC Test Circuit

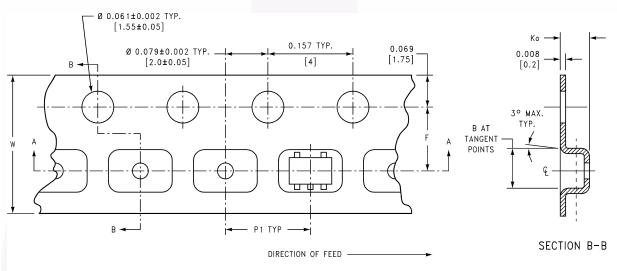
INPUT C

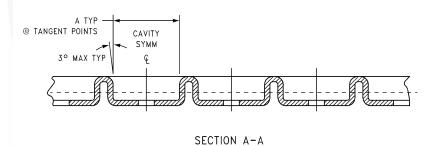
Input = AC Waveform;

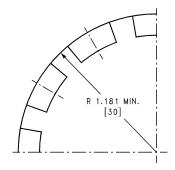
PRR = variable; Duty Cycle = 50%

Figure 2. I_{CCD} Test Circuit



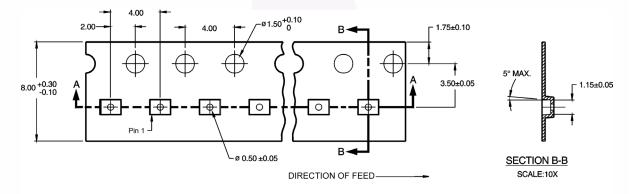

Figure 3. AC Waveforms

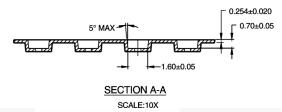

Tape and Reel Specifications


Tape Format for SC70 and SOT23

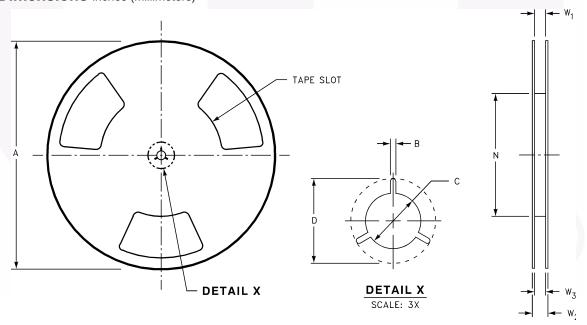
Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
M5X, P5X	Leader (Start End)	125 (typ.)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ.)	Empty	Sealed

Tape Dimensions inches (millimeters)


REND	RADIUS	NOT	TΛ	SCALE
DENU	KADIOS	NOI	10	SUALE


Package	Tape Size	Dim A	Dim B	Dim F	Dim K _o	Dim P1	Dim W
SC70-5	8mm	0.093 (2.35)	0.096 (2.45)	0.138 ± 0.004 (3.5 ± 0.10)	0.053 ± 0.004 (1.35 ± 0.10)	0.157 (4)	0.315 ± 0.004 (8 ± 0.1)
SOT23-5	8mm	0.130 (3.3)	0.130 (3.3)	0.138 ± 0.002 (3.5 ± 0.05)	0.055 ± 0.004 (1.4 ± 0.11)	0.157 (4)	0.315 ± 0.012 (8 ± 0.3)

Tape and Reel Specifications (Continued)


Tape Format for MicroPak

Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status	
L6X	Leader (Start End)	125 (typ.)	Empty	Sealed	
	Carrier	5000	Filled	Sealed	
	Trailer (Hub End)	75 (typ.)	Empty	Sealed	

Reel Dimensions inches (millimeters)

Tape Size	Α	В	С	D	N	W1	W2	W3
8mm	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/–0.039
	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/–0.00)	(14.40)	(W1 + 2.00/–1.00)

Physical Dimensions

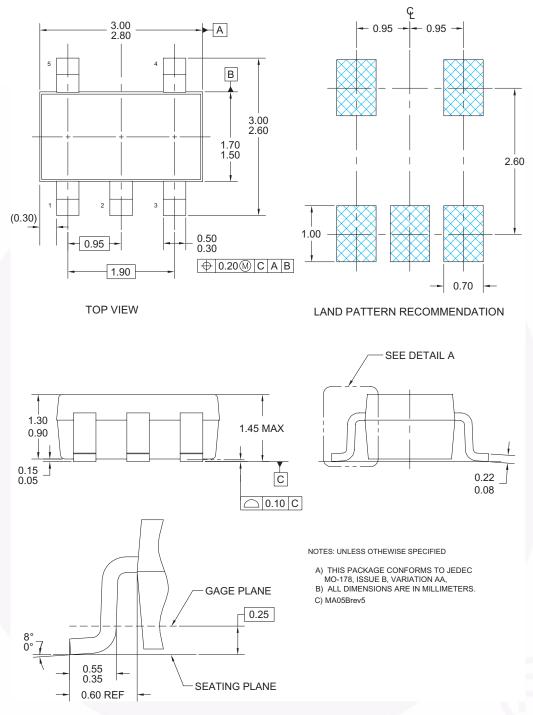


Figure 4. 5-Lead SOT23, JEDEC MO-178, 1.6mm

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

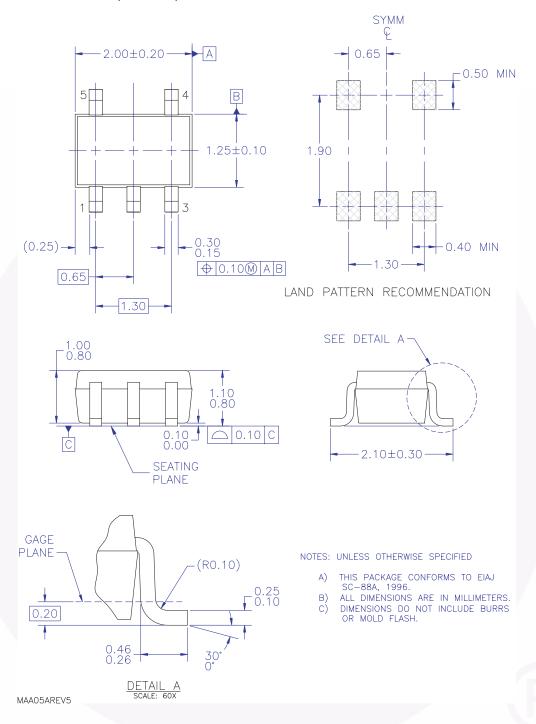
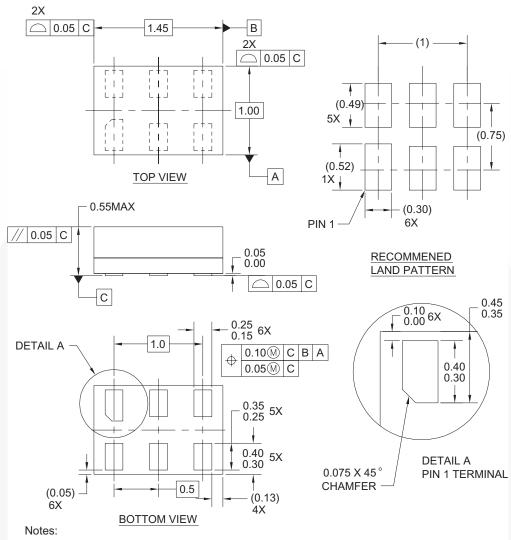



Figure 5. 5-Lead SC70, EIAJ SC-88a, 1.25mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

- 1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06AREVC

Figure 6. 6-Lead MicroPak, 1.0mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx[™]
Build it Now[™]
CorePLUS[™]
CROSSVOLT[™]
CTL[™]

Current Transfer Logic™ EcoSPARK[®] EZSWITCH™ *

FZ[®]

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series[™]

FACT[®]
FAST[®]
FastvCore[™]
FlashWriter^{® *}

FPS™ FRFET®

Global Power ResourcesM

Green FPS™

Green FPS™e-Series™

GTO™

i-Lo™

IntelliMAX™
ISOPLANAR™

MegaBuck™ MICROCOUPLER™ MicroFET™

MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC®

OPTOLOGIC[®]
OPTOPLANAR[®]

PDP-SPM™ Power220® POWEREDGE® Power-SPM™ PowerTrench®

Programmable Active Droop™

QFET[®] QS™

QT Optoelectronics™
Quiet Series™
RapidConfigure™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™3
SuperSOT™6

SuperSOT™8

SyncFET™

SYSTEM®

GENERAL

The Power Franchise®

puwer*

franchise

TinyBoost™

TinyBuck™

SupreMOS™

TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
µSerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™

der l'esse à les Frientité Consideration

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I33

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative