

3mm Round Standard T-1 With Flange Type Silicon PIN Photodiode Technical Data Sheet

Part No.: LL-304PDD2E

Features:

- ♦ Fast response time.
- \diamond High photo sensitivity.
- ◇ Small junction capacitance.
- $\diamond~$ The product itself will remain within RoHS compliant Version.

Descriptions:

 \diamond The 304PD is a high speed and high sensitive PIN photodiode in a standard 3 ϕ plastic package. Due to its water clear epoxy the device is sensitive to visible and infrared radiation.

Applications:

- \diamond High speed photo detector.
- \diamond Security system.
- ♦ Game machine.

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25 mm (.010") unless otherwise noted.
- 3. Protruded resin is 1.00 mm (.039") max.
- 4. Specifications are subject to change without notice.

Absolute Maximum Ratings at Ta=25 $^\circ\!\!\mathrm{C}$

Parameters	Symbol	Max.	Unit	
Power Dissipation	PD	150	mW	
Reverse Voltage	VR	32	V	
Operating Temperature Range	Topr	-25℃ to +80℃		
Storage Temperature Range	Tstg	-40℃ to +85℃		
Lead Soldering Temperature [4mm (.157") From Body]	Tsld	260 ℃		

Electrical Optical Characteristics at Ta=25 $^\circ\!\!\mathrm{C}$

Parameters	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Rang of Spectral Bandwidth	λ0.5	840		1100	nm	
Open-Circuit Voltage	Voc		0.42		V	Ee=5mW/cm ² λp=940nm
Short-Circuit Current	I _{SC}		30		μA	Ee=1mW/cm ² , λ =940nm
Peak Emission Wavelength	λр		940		nm	IF=20mA (Note 3)
Reverse Light Current	IL		3		μA	$V_R=5V,$ Ee=1mW/cm ² λ =940nm
Dark Current	I _D			10	nA	V _R =10V, Ee=0mW/m ²
Reverse Breakdown	B _{VR}	32	170		V	IR=100µA, Ee=0mW/cm ²
Total Capacitance	C _t		5		pF	Ee=0mW/cm ² , VR=5V, f=1MHZ
Rise Time (10% to 90%)	Tr		6		nS	$V_{R}=10V, R_{L}=100\Omega,$
Fall Time (90% to 10%)	Tf		6			

Terminal Capacitance vs. Reverse Voltage

105

Please read the following notes before using the datasheets:

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

2. Storage

- 2.1 Do not open moisture proof bag before the products are ready to use.
- 2.2 Before opening the package, the LEDs should be kept at 30 $^\circ\!\!\mathbb{C}$ or less and 90%RH or less.
- 2.3 The LEDs should be used within a year.
- 2.4 After opening the package, the LEDs should be kept at 30° C or less and 70%RH or less.
- 2.5 The LEDs should be used within 168 hours (7 days) after opening the package.

3. Soldering Condition

- 3.1 Pb-free solder temperature profile.
- 3.2 Reflow soldering should not be done more than two times.
- 3.3 When soldering, do not put stress on the LEDs during heating.
- 3.4 After soldering, do not warp the circuit board.

4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 260° for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

6. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices equipment and machinery must be properly grounded.