Trench Power MOSFET # -20 V, Single P-Channel, SOT-23 #### **Features** - Leading –20 V Trench for Low R_{DS(on)} - -1.8 V Rated for Low Voltage Gate Drive - SOT-23 Surface Mount for Small Footprint - NTRV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant #### **Applications** - Load/Power Management for Portables - Load/Power Management for Computing - Charging Circuits and Battery Protection #### MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Parameter | | | Symbol | Value | Unit | |---|-----------------|-----------------------|--------------------------------------|---------------|------| | Drain-to-Source Voltage | | | V _{DSS} | -20 | V | | Gate-to-Source Voltage | | | V _{GS} | ±8.0 | V | | Continuous Drain | Steady | T _A = 25°C | I _D | -2.4 | Α | | Current (Note 1) | State | T _A = 85°C | | -1.7 | | | | t ≤ 10 s | T _A = 25°C | | -3.2 | | | Power Dissipation (Note 1) | Steady
State | T _A = 25°C | P _D | 0.73 | W | | | t ≤ 10 s | | | 1.25 | | | Continuous Drain | Steady | T _A = 25°C | I _D | -1.8 | Α | | Current (Note 2) | State | T _A = 85°C | | -1.3 | | | Power Dissipation (Note 2) | | T _A = 25°C | P _D | 0.42 | W | | Pulsed Drain Current | tp = | : 10 μs | I _{DM} | -18 | Α | | ESD Capability (Note 3) | | 100 pF,
1500 Ω | ESD | 225 | V | | Operating Junction and Storage Temperature | | | T _J ,
T _{STG} | –55 to
150 | °C | | Source Current (Body Dio | I _S | -2.4 | Α | | | | Single Pulse Drain–to–Source Avalanche Energy (V_{GS} = -8 V, I_{L} = -1.8 Apk, L = 10 mH, R_{G} = 25 Ω) | | | EAS | 16 | mJ | | Lead Temperature for Soldering
Purposes (1/8" from case for 10 s) | | | T _L | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. ### ON Semiconductor® #### www.onsemi.com | V _{(BR)DSS} | R _{DS(ON)} TYP | I _D MAX | | |----------------------|-------------------------|--------------------|--| | | 70 mΩ @ –4.5 V | | | | –20 V | 90 mΩ @ –2.5 V | -3.2 A | | | | 112 mΩ @ –1.8 V | | | #### P-Channel MOSFET # MARKING DIAGRAM & PIN ASSIGNMENT SOT-23 CASE 318 STYLE 21 TR4 = Device Code M = Date Code ■ Pb-Free Package (Note: Microdot may be in either location) # **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|-----------|-----------------------| | NTR4101PT1G | SOT-23 | 3000 / Tape & | | NTRV4101PT1G | (Pb-Free) | Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### THERMAL RESISTANCE RATINGS | Parameter | Symbol | Max | Unit | |---|-----------------|-----|------| | Junction-to-Ambient - Steady State (Note 1) | $R_{\theta JA}$ | 170 | °C/W | | Junction-to-Ambient - t < 10 s (Note 1) | $R_{\theta JA}$ | 100 | | | Junction-to-Ambient - Steady State (Note 2) | $R_{ heta JA}$ | 300 | | - 1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces) - 2. Surface-mounted on FR4 board using the minimum recommended pad size. - 3. ESD Rating Information: HBM Class 0 #### **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | Characteristic | | | Min | Тур | Max | Unit | |---|---|---------------------|------|-----------------|------------------|------| | OFF CHARACTERISTICS | | | | | | | | Drain-to-Source Breakdown Voltage (Note 4) $(V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A})$ | | | -20 | | | V | | Zero Gate Voltage Drain Current (Note 4)
(V _{GS} = 0 V, V _{DS} = -16 V) | | | | | -1.0 | μΑ | | Gate-to-Source Leakage Current
(V _{GS} = ±8.0 V, V _{DS} = 0 V) | | | | | ±100 | nA | | ON CHARACTERISTICS | | | | | | • | | Gate Threshold Voltage (Note 4) $(V_{GS} = V_{DS}, I_D = -250 \mu A)$ | | V _{GS(th)} | -0.4 | -0.72 | -1.2 | V | | Drain-to-Source On-Resistance $(V_{GS} = -4.5 \text{ V}, I_D = -1.6 \text{ A})$ $(V_{GS} = -2.5 \text{ V}, I_D = -1.3 \text{ A})$ $(V_{GS} = -1.8 \text{ V}, I_D = -0.9 \text{ A})$ | | | | 70
90
112 | 85
120
210 | mΩ | | Forward Transconductance (V _{DS} = | g _{FS} | | 7.5 | | S | | | CHARGES, CAPACITANCES & GA | TE RESISTANCE | | | | | | | Input Capacitance | | C _{iss} | | 675 | | pF | | Output Capacitance | $(V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}, V_{DS} = -10 \text{ V})$ | C _{oss} | | 100 | | - | | Reverse Transfer Capacitance | | C _{rss} | | 75 | | | | Total Gate Charge | $(V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_D = -1.6 \text{ A})$ | Q _{G(tot)} | | 7.5 | 8.5 | nC | | Gate-to-Source Gate Charge | $(V_{DS} = -10 \text{ V}, I_D = -1.6 \text{ A})$ | Q_{GS} | | 1.2 | | nC | | Gate-to-Drain "Miller" Charge | $(V_{DS} = -10 \text{ V}, I_D = -1.6 \text{ A})$ | Q_{GD} | | 2.2 | | nC | | Gate Resistance | | R_{G} | | 6.5 | | Ω | | SWITCHING CHARACTERISTICS | (Note 5) | | | | | | | Turn-On Delay Time | | t _{d(on)} | | 7.5 | | ns | | Rise Time | $(V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ | t _r | | 12.6 | | | | Turn-Off Delay Time | $I_D = -1.6 \text{ A}, R_G = 6.0 \Omega$ | t _{d(off)} | | 30.2 | | | | Fall Time | | t _f | | 21.0 | | | | DRAIN-SOURCE DIODE CHARAC | TERISTICS | | | | | | | Forward Diode Voltage | $(V_{GS} = 0 \text{ V}, I_{S} = -2.4 \text{ A})$ | V _{SD} | | -0.82 | -1.2 | V | | Reverse Recovery Time | | t _{rr} | | 12.8 | 15 | ns | | Charge Time | $(V_{GS} = 0 \text{ V},$
$dI_{SD}/dt = 100 \text{ A}/\mu\text{s}, I_{S} = -1.6 \text{ A})$ | ta | | 9.9 | | ns | | Discharge Time |] | t _b | | 3.0 | | ns | | Reverse Recovery Charge | Q _{rr} | | 1008 | | nC | | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - 4. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%. - 5. Switching characteristics are independent of operating junction temperature. #### TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted) Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On–Resistance vs. Drain Current and Temperature Figure 4. On–Resistance vs. Drain Current and Temperature Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current vs. Voltage # TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted) Figure 7. Capacitance Variation Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Gate Charge Figure 9. Resistive Switching Time Variation vs. Gate Resistance Figure 10. Diode Forward Voltage vs. Current Figure 11. Maximum Rated Forward Biased Safe Operating Area ### PACKAGE DIMENSIONS #### SOT-23 (TO-236) CASE 318-08 **ISSUE AP** NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1. DII 1982. - CONTROLLING DIMENSION: INCH. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL - DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, | PROT | TRUSIONS OR CATE BURRS. | | | | INCHES | | | |------|-------------------------|------|------|-------|--------|-------|--| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | | Α | 0.89 | 1.00 | 1.11 | 0.035 | 0.040 | 0.044 | | | A1 | 0.01 | 0.06 | 0.10 | 0.001 | 0.002 | 0.004 | | | b | 0.37 | 0.44 | 0.50 | 0.015 | 0.018 | 0.020 | | | С | 0.09 | 0.13 | 0.18 | 0.003 | 0.005 | 0.007 | | | D | 2.80 | 2.90 | 3.04 | 0.110 | 0.114 | 0.120 | | | E | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 | | | е | 1.78 | 1.90 | 2.04 | 0.070 | 0.075 | 0.081 | | | L | 0.10 | 0.20 | 0.30 | 0.004 | 0.008 | 0.012 | | | L1 | 0.35 | 0.54 | 0.69 | 0.014 | 0.021 | 0.029 | | | HE | 2.10 | 2.40 | 2.64 | 0.083 | 0.094 | 0.104 | | | θ | 0° | | 10° | ٥° | | 10° | | STYLE 12: PIN 1. CATHODE 2. CATHODE - 3. ANODE #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Phone: 421 33 790 2910 Phone: 81-3-5817-1050 Europe, Middle East and Africa Technical Support: Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative