

DATASHEET

4 PIN SOP ZERO-CROSS TRIAC PHOTOCOUPLER ELM304X, ELM306X, ELM308X Series

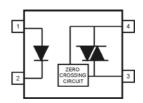
Features:

• Halogens free.

(Br <900 ppm ,Cl <900 ppm , Br+Cl < 1500 ppm)

- Peak breakdown voltage
 - 400V: ELM304X
- 600V: ELM306X
- 800V: ELM308X
- High isolation voltage between input and output (Viso=3750 V rms)
- Zero voltage crossing
- Compliance with EU REACH
- Pb free and RoHS compliant.
- UL and cUL approved
- VDE approved
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved
- CQC approved

Description


The ELM304X, ELM306X and ELM308X devices consist of a GaAs infrared emitting diode optically coupled to a monolithic silicon detector performing the function of a zero voltage crossing bilateral triac driver.

They are designed for use with a discrete power triac in the interface of logic systems to equipment powered from 110 to 240 VAC lines, such as solid-state relays, industrial controls, motors, solenoids and consumer appliances, etc.

Applications

- Solenoid/valve controls
- Light controls
- Static power switch
- AC motor drivers
- E.M. contactors
- Temperature controls
- AC Motor starters
- Solid state relays

Schematic

Pin Configuration

- 1. Anode
- 2. Cathode
- 3. Terminal
- 4. Terminal

Absolute Maximum Ratings (Ta=25°C)

	Parameter		Symbol	Rating	Unit
Input	Forward current		I _F	50	mA
	Peak forward current (1	us pulse, 300pps)	I _{F(PK)}	1	А
	Reverse voltage		V _R	6	V
	Power Dissipation		P _D	100	mW
Output		ELM304X		400	
	Off-state Output Terminal Voltage	ELM306X	V_{DRM}	600	V
		ELM308X		800	
	On state RMS current		I _{T(RMS)}	70	mA(RMS)
	Power dissipation		Pc	300	mW
Isolation voltage *1			V _{ISO}	3750	Vrms
Operating temperature			T _{OPR}	-40~+100	°C
Storage temperature			T _{STG}	-55~+150	°C
Soldering	g Temperature*2		T _{SOL}	260	°C

Notes:

Recommended Operating Conditions (Note)

Please use under recommended operating conditions to obtain expected characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit
	EL30X2		15	20	25	mA
Input forward current	EL30X3	IF	7	10	20	mA
	EL30X4		5	7	15	mA
AC mains voltage		Vac	-	-	240	V
Operating temperature		Topr	-25	-	85	°C

Notes:

The recommended operating conditions are given as a design guide necessary to obtain the intended performance of the device. Each parameter is an independent value. When creating a system design using this device, the electrical characteristics specified in this data sheet should also be considered.

^{*1} AC for 1 minute, R.H.= $40 \sim 60\%$ R.H. In this test, pins 1, 2 are shorted together, and pins 3, 4 are shorted together.

^{*2} For 10 seconds

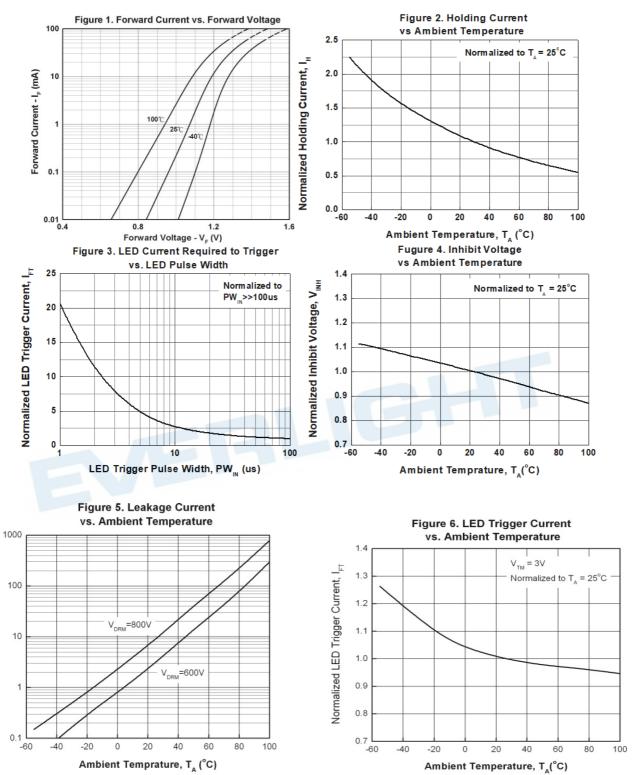
Electro-Optical Characteristics (Ta=25°C unless specified otherwise)

Input

Parameter	Symbol	Min.	Typ.*	Max.	Unit	Condition
Forward Voltage	V_{F}	-	-	1.5	V	I _F = 10mA
Reverse Leakage current	I _R	-	-	10	μΑ	$V_R = 6V$

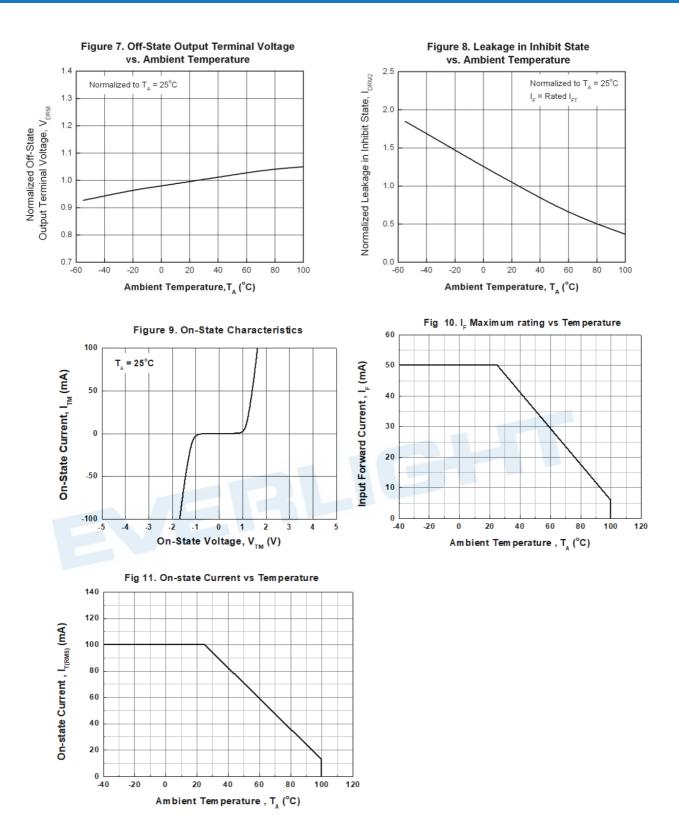
Note: Reverse Voltage(VR) Condition is applied to IR test only The device is not designed for reverse operation Output

Parameter	Symbol	Min.	Тур.*	Max.	Unit	Condition
Peak Blocking Current	I _{DRM1}	-	-	500	nA	V _{DRM} = Rated V _{DRM} I _F = 0mA
Peak On-state Voltage	V_{TM}	-	-	2.5	V	I _{TM} =100mA peak
Critical Rate of Rise off-state Voltage	dv/dt	1000	-	-	V/µs	V _{PEAK} = 0.636×Rated V _{DRM} , I _F = 0mA (Fig.12)
Inhibit Voltage (MT1-MT2 voltage above which device will not trigger)	Vinh	-	-	20	V	T
Leakage in Inhibited State	I _{DRM2}	21		1000	μA	I _F = Rated I _{FT} , V _{DRM} =Rated V _{DRM} , off state

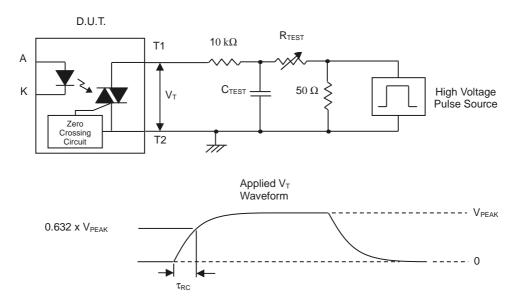

Transfer Characteristics

Transier Orial acteristics							
Parameter		Symbol	Min.	Тур.*	Max.	Unit	Condition
LED Trigger Current	3042 3062 3082	– - I _{FT}	-	-	10	- mA	Main terminal Voltage=3V*1
	3043 3063 3083		-	-	5		
	3044 3064 3084		-	-	3		
Holding Current		Ін	-	280	-	μΑ	

^{*1.} All devices are guaranteed to trigger at an IF value over than max IFT



Typical Electro-Optical Characteristics Curves


Leakage Current, IDRM (nA)

Note: The graphs shown in this datasheet are representing typical data only and do not show guaranteed values

Figure 12. Static dv/dt Test Circuit & Waveform

Measurement Method

The high voltage pulse is set to the required V_{PEAK} value and applied to the D.U.T. output side through the RC circuit above. LED current is not applied. The waveform V_T is monitored using a x100 scope probe. By varying R_{TEST} , the dv/dt (slope) is increased, until the D.U.T. is observed to trigger (waveform collapses). The dv/dt is then decreased until the D.U.T. stops triggering. At this point, τ_{RC} is recorded and the dv/dt calculated.

$$dv/dt = \frac{0.632 \text{ x V}_{PEAK}}{\tau_{RC}}$$

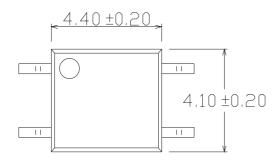
Order Information

Part Number

ELM304X(Z)-V or ELM306X(Z)-V or ELM308X(Z)-V

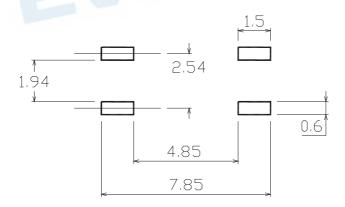
Note

 $X = Part No. (2 for I_{FT}=10mA, 3 for I_{FT}=5mA, 4 for I_{FT}=3mA)$


Z = Tape and reel option (TA, TB or none).

V = VDE safety approved optional

Option	Description	Packing quantity	
None	Standard	100 units per tube	
None	Standard + VDE safety optional	100 units per tube	
(TA)	TA tape & reel option	3500 units per reel	
(TB)	TB tape & reel option	3500 units per reel	
(TA)-V	TA tape & reel option + VDE safety optional	3500 units per reel	
(TB)-V	TB tape & reel option + VDE safety optional	3500 units per reel	

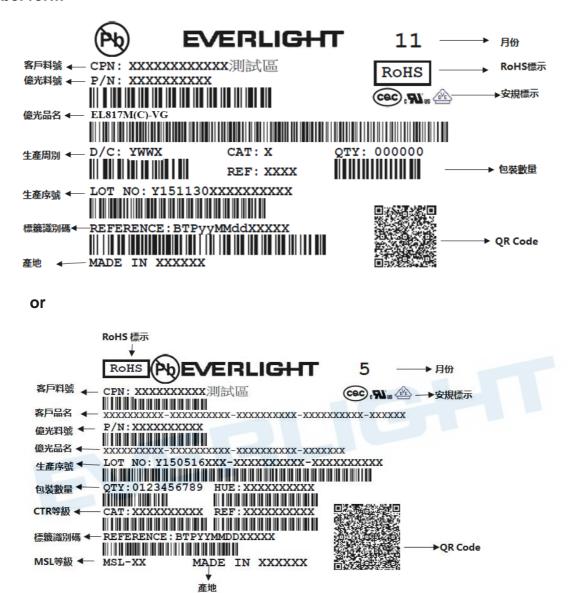


Package Dimension (Dimensions in mm)

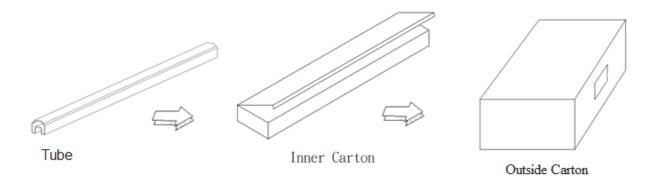
Recommended pad layout for surface mount leadform

Device Marking

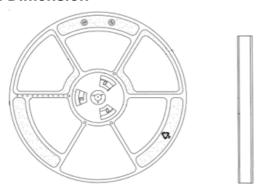
Notes


EL denotes Everlight
M3063 denotes Device Number
Y denotes 1 digit Year code
WW denotes 2 digit Week code

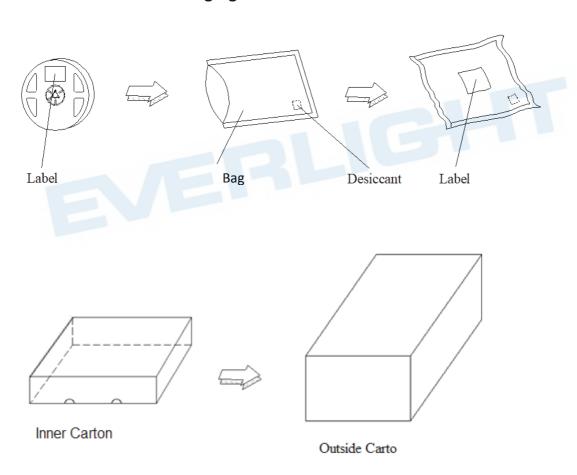
V denotes VDE safety option (optional)



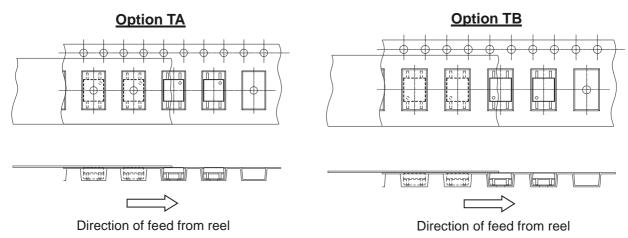
Label form



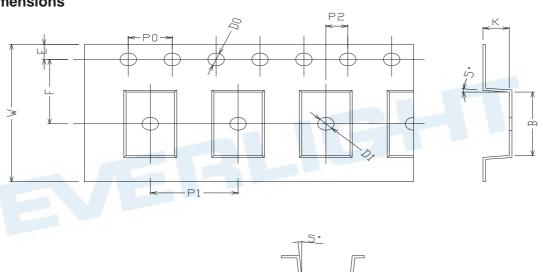
TUBE Dimension



Reel Dimension



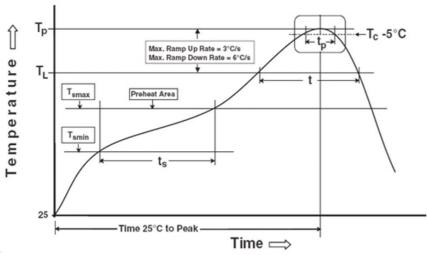
Moisture Resistant Packaging



Tape & Reel Packing Specifications

Tape dimensions

Dimension No.	Α	В	Do	D1	E	F
Dimension (mm)	4.4 ± 0.1	7.4 ± 0.1	1.5 + 0.1/-0	1.5 ± 0.1	1.7 5± 0.1	7.5 ± 0.1


Dimension No.	Ро	P1	P2	t	W	К
Dimension (mm)	4.0 ± 0.15	8.0 ± 0.1	2.0 ± 0.1	0.25 ± 0.03	16.0 ± 0.2	2.4 ± 0.1

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Temperature min (T_{smin})

Temperature max (T_{smax})

Time (T_{smin} to T_{smax}) (t_s)

Average ramp-up rate (T_{smax} to T_p)

Other

Liquidus Temperature (T_L)

Time above Liquidus Temperature (t L)

Peak Temperature (T_P)

Time within 5 °C of Actual Peak Temperature: TP - 5°C

Ramp- Down Rate from Peak Temperature

Time 25°C to peak temperature

Reflow times

Reference: IPC/JEDEC J-STD-020D

150 °C

200°C

60-120 seconds

3 °C/second max

217 °C

60-100 sec

260°C

30 s

6°C /second max.

8 minutes max.

3 times

Precautions for General Storage

- Avoid storage locations where devices may be exposed to moisture or direct sunlight.
- Follow the precautions printed on the packing label of the device for transportation and storage.
- Keep the storage location temperature and humidity within a range of 5°C to 35°C and 20 % to 60 %,respectively.
- Do not store the products in locations with poisonous gases (especially corrosive gases) or in dusty conditions.
- Store the products in locations with minimal temperature fluctuations. Rapid temperature changes during storage can cause condensation, resulting in lead oxidation or corrosion, which will deteriorate the solderability of the leads.
- When restoring devices after removal from their packing, use anti-static containers.
- Do not allow loads to be applied directly to devices while they are in storage.
- If devices have been stored for more than two years under normal storage conditions, it is recommended that you check the leads for ease of soldering prior to use.

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.