

DATASHEET

TO-247-TSC 1200V N-Channel Enhancement SiC Power MOSFET

EL-MAKR04120PA-TC

V _{DSS}	=	1200	٧
I _D	=	55	Α
R _{DS(on)}	=	40 r	mΩ

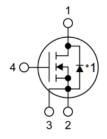
Preliminary

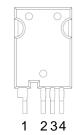
Features

- High Blocking Voltage with Low On-Resistance
- Low gate resistance for high-frequency switching
- Low capacitances and low gate charge
- Best thermal conductivity and behavior
- Pb-Free Lead, Halogen Free, RoHS Compliant

Schematic

Pin Configuration


- 1. Drain
- 2. Power Source
- 3. Driver Source
- 4. Gate
- *1. Body Diode


Benefits

- Improve System Efficiency
- Increase Power Density
- Reduce Heat Sink Requirement
- Reduction of System Cost

Applications

- Solar Inverters
- EV Battery Chargers
- High Voltage DC/DC Converters
- Switch Mode Power Supply

Key Performance Parameters

Symbol	V_{DSmin}	V_{GSS}	Ι _D	I _{DP}	$T_{J,max}$	P _D
Parameter	Drain-Source Voltage	Gate-Source Voltage (DC)	Continuous Drain Current	Pulse Drain Current	Junction temperature	Power Dissipation
Value	1200V	-4/18V	55A	171A	175 °C	454W

Maximum Ratings

Parameter	Symbol	Value	Unit	Test Conditions
Drain - Source Voltage	V_{DSmin}	1200	V	V _{GS} = 0V, I _D = 250μA
Gate - Source Voltage (DC) Max	V_{GS}	-10 / +20	V	
Gate - Source Voltage (DC)	V_{GS}	-4 / +18	V	Recommended operating values
Continuous Drain Current	L_ *2	55		V _{GS} =20V, T _C =25°C
Continuous Drain Current	l _D *2	39	A	V _{GS} =20V, T _C =100°C
Pulsed Drain Current	IDP	171	А	
Power Dissipation	P _D *3	454	W	
Operating Junction	TJ	175	°C	
Storage Temperature	T _{stg}	-55 to +175	°C	
Solder Temperature	TL	260	°C	
Mounting Torque	M _d	1 8.8	Nm lbf-in	M3 or 6-32 screw

^{*1} Please be advised not to use SiC-MOSFETs with V_{GS} below 12V as doing so may cause thermal runaway.

^{*2} Limited by maximum Ta and for Max. R_{thJC}

^{*3} $P_W \le 10\mu s$, Duty cycle $\le 1\%$

^{*4} Tested after applying V_{GS} for 100ms.

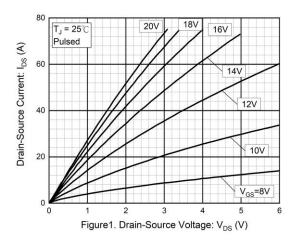
^{*5} Pulsed

Electrical Characteristics

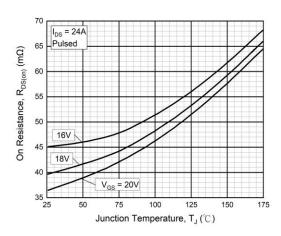
Darameter	Symbol	Value			Unit	Test Conditions	
Parameter	Symbol	Min	Тур	Max	Onn	rest Conditions	
Drain-Source Breakdown Voltage	V _{(BR)DSS}	1200	-	-	V	V _{GS} = 0V, I _D = 250μA	
Gate Threshold Voltage	V _{GS(th)} *4	-	2.8	-	V	V _{GS} =V _{DS} , I _D =2mA	
Zero Gate Voltage Drain Current	I_{DSS}	-	1	-	μA	V _{DS} = 1200V, V _{GS} = 0V	
Gate-Source Leakage Current	I _{GSS+}	-	10	200	nA	V _{GS} = 20V, V _{DS} = 0V	
Drain-Source	D *5	-	40	60	m0	V _{GS} = 18V, I _D = 24A	
On-State Resistance	R _{DS(on)} *5	-	68	100	mΩ	V _{GS} = 18V, I _D = 24A,T _J = 175°C	
Input Capacitance	C _{iss}	-	2910	-			
Output Capacitance	C_{oss}	-	103	-	pF	V _{GS} = 0V V _{DS} = 800V f= 1MHz	
Reverse Transfer Capacitance	C_{rss}	-	10	-		I— 11VII IZ	
Turn-On Delay Time	t _{d(on)}	-	50	-			
Rise Time	t _r	-	20	-		V _{DS} =800V I _D =24A	
Turn-Off Delay Time	t _{d(off)}	-	45	-	ns	V_{GS} =-4V/+18V R_G =2.5 Ω	
Fall Time	t _f	-	10	-			
Gate to Source Charge	Q_gs	-	40	-			
Gate to Drain Charge	Q_{gd}	-	29	-	nC	V_{DS} = 800V I_{DS} = 24A V_{GS} = +18V/-4V	
Total Gate Charge	Qg	-	115	-		100 1007 10	
Gate resistance	R_G	-	1	-	Ω	f=1MHz, V _{AC} =25mV	

Body Diode Characteristics

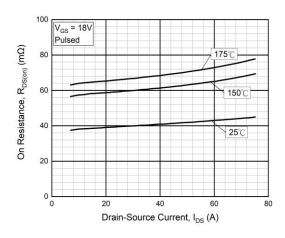
Parameter	Symbol	Value		Unit	Test Conditions	
r ai ailletei	rameter Symbol -		Max.	Offic		
Diode Forward Voltage	V_{SD}	4.6	-	V	V _{GS} = -4V, I _S = 24A	
Continuous Diode Forward Current	I _S	-	40	А		

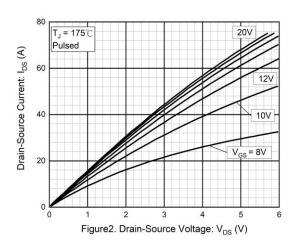

Thermal Characteristics (Measured conformable to JESD51-14.)

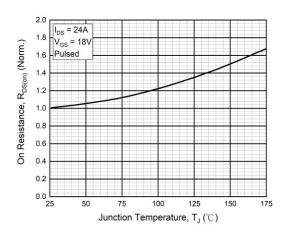
Parameter	Symbol	Value		Unit
r arameter	Symbol	Тур	Max	Oilit
Thermal Resistance from Junction to Case	Rejc	0.26	0.33	°C/W

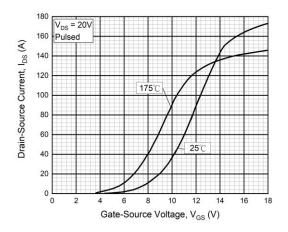


Typical Performance

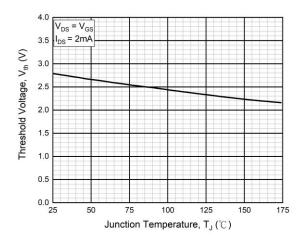

Typical Output Characteristics (I)


Typical on-resistance by various junction temperature and gate voltage

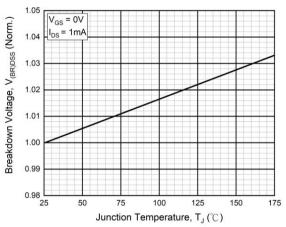

Typical on-resistance by various drain current and junction temperature


Typical Output Characteristics(II)

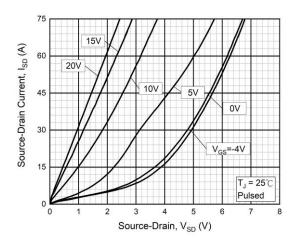
Normalized on-resistance by various junction temperature



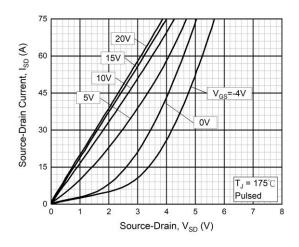
Typical transfer characteristics by various gate voltage and junction temperature

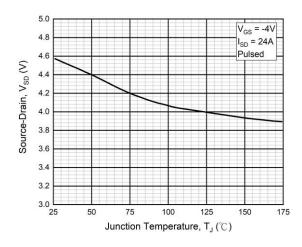


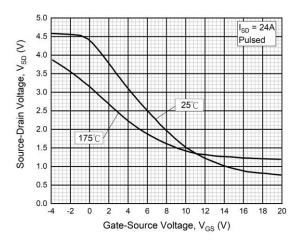
Typical threshold voltage by various junction temperature



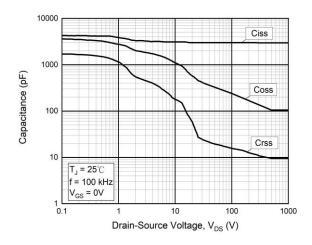
junction temperature


Normalized breakdown voltage by various

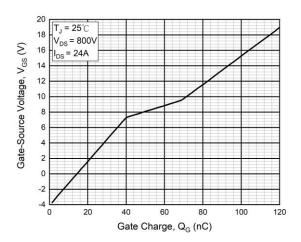

Typical body diode forward current by various forward voltage and gate voltage(I)


Typical body diode forward current by various forward voltage and gate voltage(II)

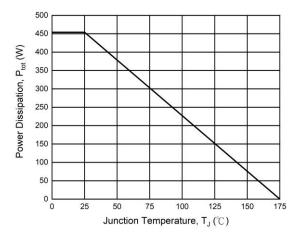
Typical body diode forward voltage by various junction temperature



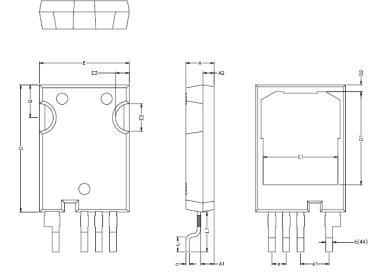
Typical body diode forward voltage by various gate voltage and junction temperature




Typical capacitance by various drain voltage


Typical gate charge characteristic

Maximum Safe Operating Area (SOA)



Power dissipation vs. Junction Temperature

Package Outlines

MILLIMETERS DIM TYP. MAXMIN 5.02 5.22 Α 4.82 2.61 Α1 2.21 2.41 Α2 2.2 1.8 1.2 b 0.95 1.45 0.35 0.85 0.6 22.34 22.54 22.74 D D1 16.3 16.55 16.8 D2 0.99 1.19 1.39 Е 15.74 15.94 16.14 E1 13.01 13.26 13.51 E2 4.71 4.91 5.11 E3 2.26 2.46 2.66 2.54BSC. е 5.08BSC. e1 L L1 Q 5.59 5.79 5.99

Unit: mm

Drawing and Dimensions

DATASHEET TO-247-TSC 1200V N-Channel Enhancement SiC Power MOSFET EL-MAKR04120PA-TC (Preliminary)

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.