

DATASHEET

TO-247-TSC 650V N-Channel Enhancement SiC Power MOSFET **EL-MAKR0365XA-TC**

Preliminary VDSS = 650 110 Α =

Features

- Low on-resistance RDS(on)
- · Best thermal conductivity and behavior
- · High speed switching
- High robustness of dv/dt
- · Low capacitances and low gate charge
- · Low gate resistance for high-frequency switching
- · Easy to parallel
- Pb-Free, Halogen Free, RoHS Compliant

Benefits

- Improve System Efficiency
- Increase Power Density
- Reduce Heat Sink Requirement
- Reduction of System Cost

Applications

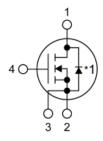
- Switching mode power supply
- PV inverter
- Uninterruptible Power Supply
- Motor Drives
- DC/DC converters
- EV charging

Key Performance Parameters

Symbol	V_{DSmin}	V_{GSS}	I _D	I _{DP}	$T_{J,max}$	P_D
Parameter	Drain-Source Voltage	Gate-Source Voltage (DC)	Continuous Drain Current	Pulse Drain Current	Junction temperature	Power Dissipation
Value	650V	-10~23V	110A	220A	175 °C	490W

 I_{D}

 $R_{DS(on)}$



30 mΩ

Schematic

Pin Configuration

- 1. Drain
- 2. Power Source
- 3. Driver Source
- 4. Gate
- *1. Body Diode

234

Maximum Ratings

Parameter	Symbol	Value	Unit	Test Conditions
Drain - Source Voltage	V_{DSmin}	650	٧	V _{GS} = 0V, I _D = 250μA
Gate - Source Voltage (DC) Max	V_{GS}	-10 / +23	V	
Gate - Source Voltage (DC)	V _{GS}	-5 / +18	V	Recommended operating values
Continuous Drain Current	l _D *2	110	А	
Pulse Drain Current	I _{DP}	220	Α	
Power Dissipation	P _D *3	490	W	
Operating Junction	TJ	175	°C	
Storage Temperature	T _{stg}	-55 to+ 175	°C	
Solder Temperature	TL	260	°C	
Mounting Torque	M _d	1 8.8	Nm lbf-in	M3 or 6-32 screw

^{*1} Please be advised not to use SiC-MOSFETs with V_{GS} below 12V as doing so may cause thermal runaway.

 $^{^{*}2}$ Limited by maximum Ta and for Max. R_{thJC}

^{*3} Pw $\,\leq\,$ 10 μ s, Duty cycle $\,\leq\,$ 1%

^{*4} Tested after applying V_{GS} for 100ms.

^{*5} Pulsed

Electrical Characteristics

Barrandar	Ob-al	Value			11:4	Tank Can distance	
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions	
Drain-Source Breakdown Voltage	V _{(BR)DSS}	650	-	-	V	V _{GS} = 0V, I _D = 250μA	
Gate Threshold Voltage	V _{GS(th)} *4	2.0	-	4.0	V	V _{DS} = 10V, I _D =13.3mA	
Zero Gate Voltage Drain Current	I _{DSS}	-	6.0 12	60 -	μA	V _{DS} = 750V, V _{GS} = 0V,T _J =25°C V _{DS} = 750V, V _{GS} = 0V,T _J =150°C	
Gate-Source Leakage Current	I _{GSS+}	-	-	100	nA	V _{GS} = 23V, V _{DS} = 0V	
Gate-Source Leakage Current	I _{GSS-}	-	-	-100	nA	V _{GS} = -10V, V _{DS} = 0V	
		-	20	-		V _{GS} = 18V, I _D = 26.7A,T _J = 25°C	
Drain-Source On-State Resistance	R _{DS(on)} *5	-	23	-	mΩ	V _{GS} = 18V, I _D = 26.7A,T _J = 125°C	
		-	25	-		V _{GS} = 18V, I _D = 26.7A,T _J = 150°C	
Input Capacitance	C_{iss}	-	4300	-			
Output Capacitance	C_{oss}	-	330	-	pF	V _{GS} = 0V V _{DS} = 400V f= 1MHz	
Reverse Transfer Capacitance	C_{rss}	-	25	-		1- 11VII 12	
Turn-On Switching Loss	Eon	-	29	-	μJ		
Turn-Off Switching Loss	E _{off}	-	239	-	μJ	V 400V I 00.74	
Turn-On Delay Time	$t_{d(on)}$	-	50	-		V _{DS} = 400V, I _D = 26.7A L= 120μH Lσ = 150nH	
Rise Time	t _r	-	22	-	ns	$V_{GS} = -4/+18V$ $R_G = 2.0\Omega$	
Turn-Off Delay Time	$t_{\text{d(off)}}$	-	91	-	115		
Fall Time	t _f	-	22	-			
Gate to Source Charge	Q_{gs}	-	63	-		V _{DS} = 400V	
Gate to Drain Charge	Q_{gd}	-	66	-	nC	V _{DS} = 400V I _{DS} = 26.7A V _{GS} = 18V	
Total Gate Charge	Q_{g}	-	240	-			
Gate resistance	R_G	-	1.5	-	Ω	f = 1MHz, open drain	

Body Diode Characteristics

Parameter	Symbol	Value		Unit	Test Conditions	
Farameter	Symbol	Тур.	Max.	Onit	rest conditions	
Diode Forward Voltage	V _{SD}	3.5	-	V	V _{GS} = 0V, I _S = 26.7A	
Continuous Diode Forward Current	I _S	-	100	А		
Reverse Recover Time	t _{rr}	36	-	ns	I _S = 26.7A V _R = 400V di/dt= 2000A/µs	
Peak Reverse Recovery Current	I _{rrm}	25	-	А		
Reverse recovery charge	Qrr	450	-	nC		

Thermal Characteristics (Measured conformable to JESD51-14.)

Parameter	Symbol	Val	lue	Unit
raiametei	Symbol	Тур		Ome
Thermal Resistance from Junction to Case	$R_{ heta JC}$	0.23	0.30	°C/W

Typical Performance Typical Output Characteristics (I)

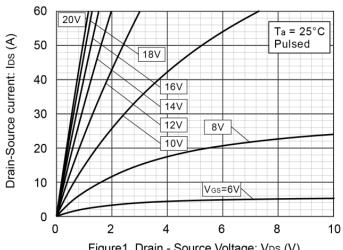


Figure 1. Drain - Source Voltage: VDS (V)

Typical Output Characteristics (II)

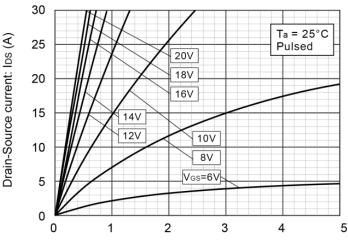


Figure 2. Drain - Source Voltage: VDS (V)

Typical Output Characteristics (III) Ta =150°C

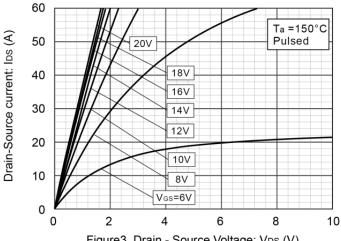


Figure 3. Drain - Source Voltage: VDS (V)

Typical Output Characteristics (IV) Ta =150°C

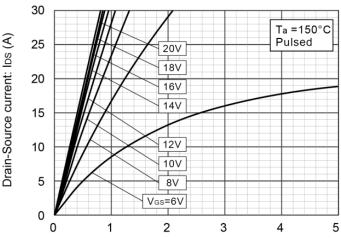
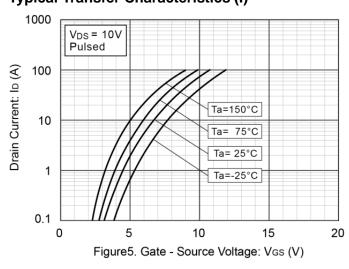
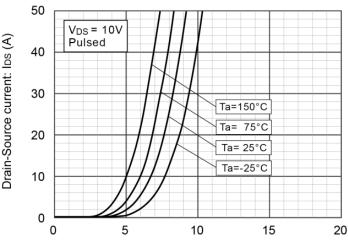
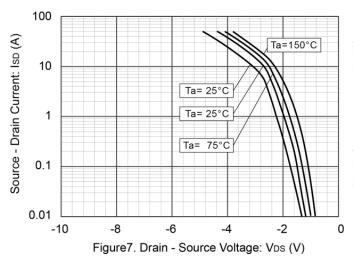
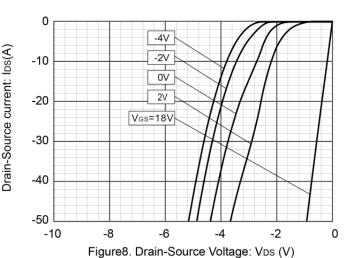



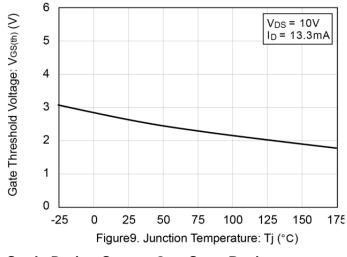
Figure 4. Drain - Source Voltage: VDS (V)

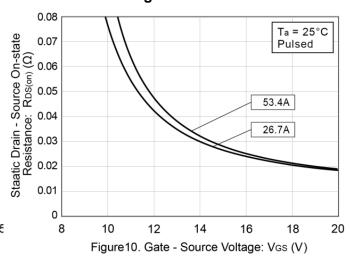
Typical Transfer Characteristics (I)

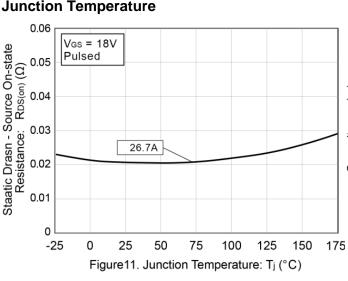
Typical Transfer Characteristics (II) 50

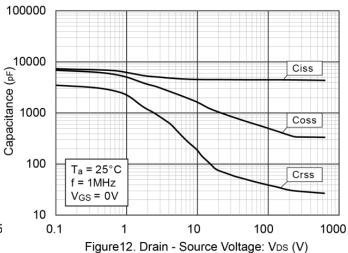




Figure 6. Gate - Source Voltage: Vgs (V)

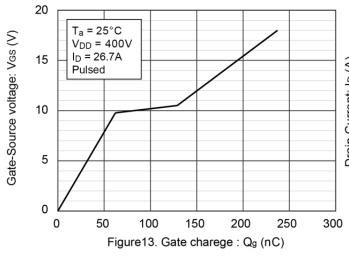

Drain – Source Voltage vs. Source - Drain current


3rd Quadrant Characteristic Ta = 25°C

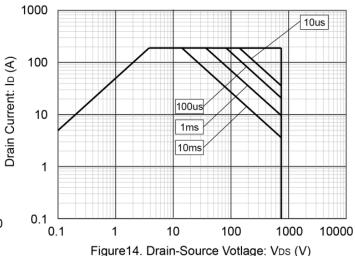

Gate Threshold Voltage vs. Junction Temperature

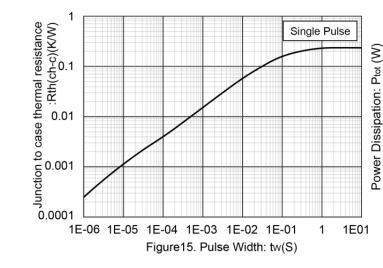

Static Drain - Source On - State Resistance vs. Gate - Source Voltage

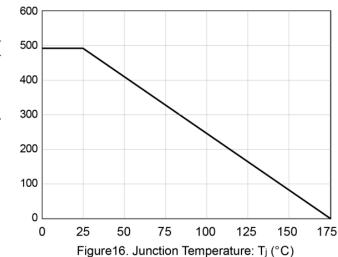
Static Drain - Source On - State Resistance vs. Junction Temperature



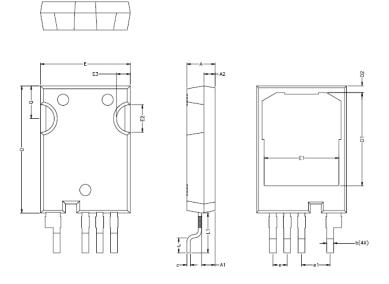
Typical Capacitance vs. Drain – Source Voltage




Typical Gate Charge


Maximum Safe Operating Area (SOA)

Typical Transient Thermal Resistance Vs. Pulse Width



Power dissipation vs. Junction Temperature

Package Outlines

MILLIMETERS DIM TYP. MAXMIN 5.02 5.22 Α 4.82 2.61 Α1 2.21 2.41 Α2 2.2 1.8 1.2 b 0.95 1.45 0.35 0.85 0.6 22.34 22.54 22.74 D D1 16.3 16.55 16.8 D2 0.99 1.19 1.39 Е 15.74 15.94 16.14 E1 13.01 13.26 13.51 E2 4.71 4.91 5.11 E3 2.26 2.46 2.66 2.54BSC. е 5.08BSC. e1 L L1 Q 5.59 5.79 5.99

Unit: mm

Drawing and Dimensions

DISCLAIMER

- Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.