

DATASHEET

TO-247-2L 1200V SiC Schottky Diode **EL-SAB050120JA**

V_{RRM}	=	1200	٧
Qc	=	263	nC
I _F (T _C =135°C)	=	50	Α
V_{F}	=	1.4	٧

Features

- Low Forward Voltage
- Ultra-Fast Switching
- Zero Reverse Recovery Current
- High-Frequency Operation and increaced power density
- High Surge Current Capability
- Pb-free Lead, Halogen Free, ROHS Compliant

Benefits

- Improve System Efficiency
- Reduction of Heat Sink Requirement
- Essentially No Switching Losses
- Parallel Devices Without Thermal Runaway

Applications

- Solar inverter/Motor Drivers/Data Center
- Boost Diodes in PFC or DC/DC Stages
- AC/DC Converters

Schematic

CASE 3

Pin Configuration

1. Cathode 2. Anode CASE: Cathode

Key Performance Parameters

Symbol	V_{RRM}	I _F	I _{FSM}	Q_{C}	$T_{J,max}$
Value	1200V	20A	300A	263nC	175℃
Condition	T _C @25°C	T _C @135°C	t _p =10ms T _C @25°C Sine half wave	$V_R = 800 \text{ V, } T_j = 25 \text{ °C}$ $Q_C = \int_0^{V_R} C(V) dV$	-

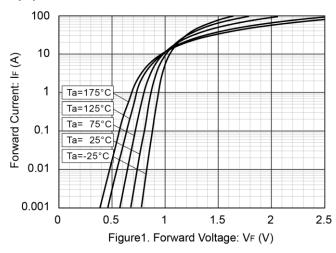
Maximum Ratings

Parameter	Symbol	Value	Unit	Test condition
Repetitive Peak Reverse Voltage	V_{RRM}	1200	V	
Surge Peak Reverse Voltage	V_{RSM}	1200	V	
DC Blocking Voltage	V_R	1200	V	
Continuous Forward Current	_F *1	50	А	T _C = 135°C
Surge non-repetitive forward	I _{FSM}	300	А	t _p = 10ms Sine half wave
current		225	А	T_C = 110°C, t_p = 10ms Sine half wave
Total power dissipation	P_D	500	W	
Total power dissipation	PD	216	VV	T _C = 110°C
Junction temperature	T_J	175	°C	
Storage temperature	T _{STG}	-55 / +175	°C	
Mounting Torque	M_d	1 8.8	Nm lbf-in	M3 or 6-32 screw

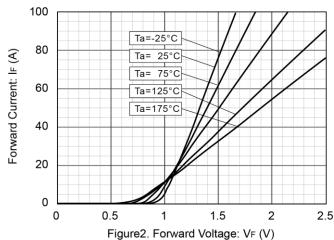
^{*1} Limited by maximum T_A and for Max. $R_{thJC.}$

Thermal Characteristics (Measured conformable to JESD51-14.)

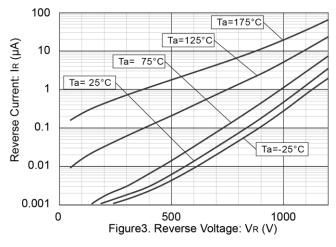
Parameter	Symbol	Value		Unit
		Тур	Max	
Thermal Resistance from Junction to Case	R _{th(JC)}	0.2	0.3	°C/W

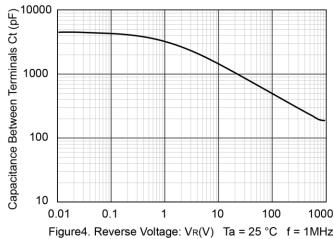

Electrical Characteristics

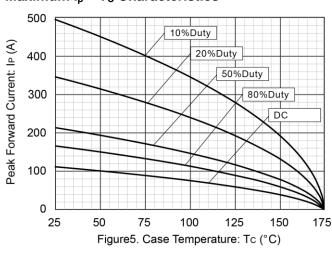
Davamatar	Comple of	Values		l lmit	Tagé and differen	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test condition
DC blocking voltage	V _{DC}	1200	-	-	V	T _J = 25°C, I _R = 150µA
			1.40	1.60		I _F = 50A, T _J = 25°C
Forward voltage	V _F	-	1.80	-	V	I _F = 50A, T _J = 150°C
			1.90	-		I _F = 50A, T _J = 175°C
			25	150	μА	V _R = 1200V, T _J = 25°C
Reverse current	I _R	-	100	-		V _R = 1200V, T _J = 150°C
			187.5	-		V _R = 1200V, T _J = 175°C
			3200			V_R = 1V, f= 1MHz T_J = 25°C
Total capacitance	С	-	185	-	pF	V_R = 800V, f= 1MHz T_J = 25°C
			183			V_R = 1200V, f= 1MHz T_J = 25°C
Capacitance Stored Energy	Ec	-	80	-	μJ	V _R = 800V
Total capacitive charge	Q _C	-	263	-	nC	$V_R = 800V$, $T_J = 25$ °C $Qc = \int_0^{V_R} C(V) dV$

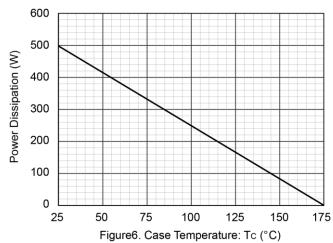


Typical Performance

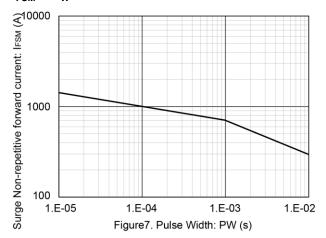

V_F-I_F Characteristics


V_F-I_F Characteristics

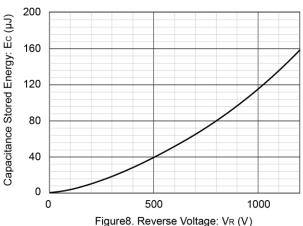

V_R-I_R Characteristics

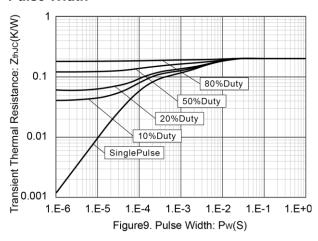

V_R-C_t Characteristics

Maximum Ip - Tc Characteristics

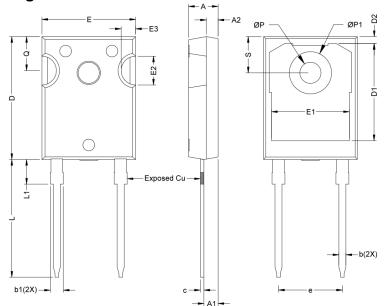


Power Dissipation

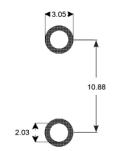



I_{FSM} - P_W Characteristics

E_C-V_R Characteristics



Typical Transient Thermal Resistance vs. Pulse Width


Package Outlines

DIM	MILIMETERS					
וווט	MIN	MIN TYP.				
Α	4.82	5.02	5.22			
A1	2.21	2.41	2.61			
A2	1.8	2	2.2			
b	0.95	1.2	1.45			
b1	1.95	2.2	2.45			
С	0.35	0.6	0.85			
D	20.75	20.95	21.15			
D1	16.3	16.55	16.8			
D2	0.99	1.19	1.39			
Е	15.74	15.94	16.14			
E1	13.01	13.26	13.51			
E2	4.71	4.91	5.11			
E3	2.26	2.46	2.66			
е	10.88BSC.					
L	19.82	20.07	20.32			
L1	3.94	4.19	4.44			
Р	3.41	3.61	3.81			
P1	6.94	7.19	7.44			
Q	5.59	5.79	5.99			
S	5.97	6.17	6.37			

Unit: mm

Recommended pad layout for surface mount leadform

Unit: mm

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.