

Synchronous Four Switch Buck-Boost Analog Front End

Features

- AEC-Q100 Automotive Qualified, See Product Identification System
- 100W USB-PD/180W EPR with PPS Support
- 12-Bit Resolution for Voltage and Current Settings and Measurements Exceeding USB-PD PPS Requirements
- Accuracy of the Output Voltage Setting of 2% (Closed Loop) from Device to Device Over Output Voltage Range and Temperature
- Accuracy of the Output Current Setting of 3% (Closed Loop) from Device to Device Over Output Voltage Range and Temperature
- Input Voltage: +4.5V to +42V
- Fully Configurable:
 - Configurable protections: input and output over current, input over/under voltage, output over/under voltage, load dump, overtemperature, internal regulator fault
 - Configurable output: constant current operation, constant voltage operation
 - Adjustable frequency
- Dynamically configurable by I²C
- · Synchronous 4-Switch Buck/Boost Architecture
 - Buck mode operation when $V_{OUT} < V_{IN}$
 - Boost mode operation when V_{OUT} > V_{IN}
 - Buck/Boost operation when V_{OUT} ≈ V_{IN}
- Adjustable Output Range, 3V to 36V
- Internal LDOs and MOSFET Drivers
- High Accuracy Internal Divider to Set Full Range Output Voltage Without External Resistors
- Accuracy of Input and Output Voltage Measurement of 2% from Device to Device Over Output Voltage Range and Temperature
- Accuracy of the Output Current Measurement of 3% from Device to Device Over Output Voltage Range and Temperature
- · Low Quiescent Current in Shutdown Mode
- Switching Frequency Range of 300 kHz to 500 kHz
- Tolerant in Nonoperating 42V Automotive Load Dump Condition

- USB Power Delivery Support:
 - High output impedance when stopped
 - Output discharge function
 - Output overcurrent, overload and short-circuit in accordance with USB power delivery
 - Regulation mode (voltage/current) detection

Device Overview

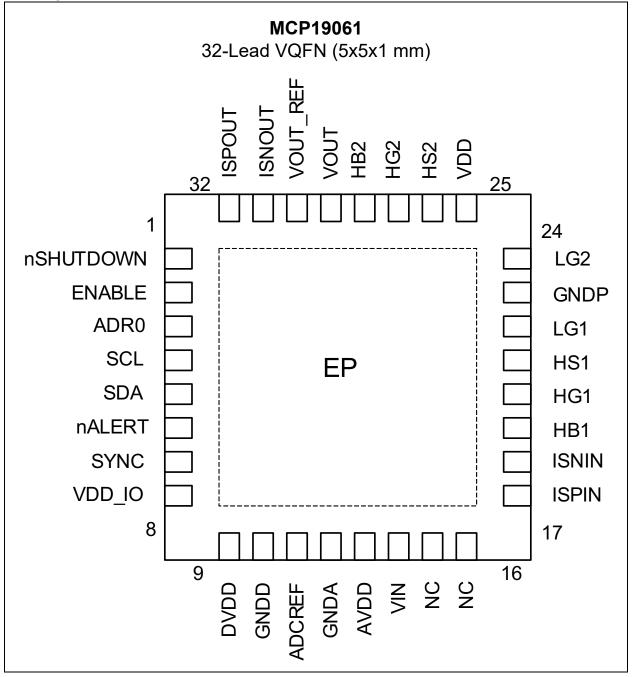
The MCP19061 is a highly integrated, mixed-signal four switch buck-boost controller that operates from +4.5V to +36V and can withstand up to +42V non-operating.

The MCP19061 features a digital PWM controller with a serial communication bus for external programmability and reporting.

Various enhancements were added to the MCP19061 to provide USB-PD compatibility with minimum external components along with improving calibration, increasing accuracy and providing greater flexibility.

Complete customization of device operating parameters, start-up or shutdown profiles, protection levels and fault handling procedures are accomplished by internal digital registers.

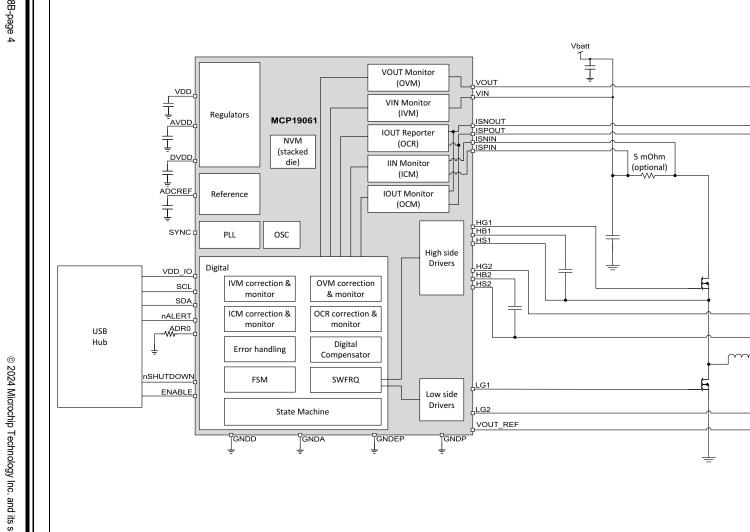
An integrated high accuracy reference voltage is used for setting output current or voltage. Internal input and output dividers facilitate the design while maintaining high accuracy. High accuracy CSA allows precision current regulation and measurement.


The MCP19061 device contains 3 internal LDOs. A 5V LDO (VDD) is used to power internal analog and gate driver circuits and provide 5V externally. A 4V LDO (AVDD) is used to power the internal analog circuitry. A 1.8V LDO is used to supply the internal logic circuitry.

The MCP19061 is packaged in a 32-lead 5 mm x 5 mm VQFN.

System designers have the ability to configure application-specific features allowing users of the MCP19061 device to save on costly board real estate and additional component costs.

A high speed (1 MHz) I²C serial bus is used for device communications from the MCP19061 to the system controller.

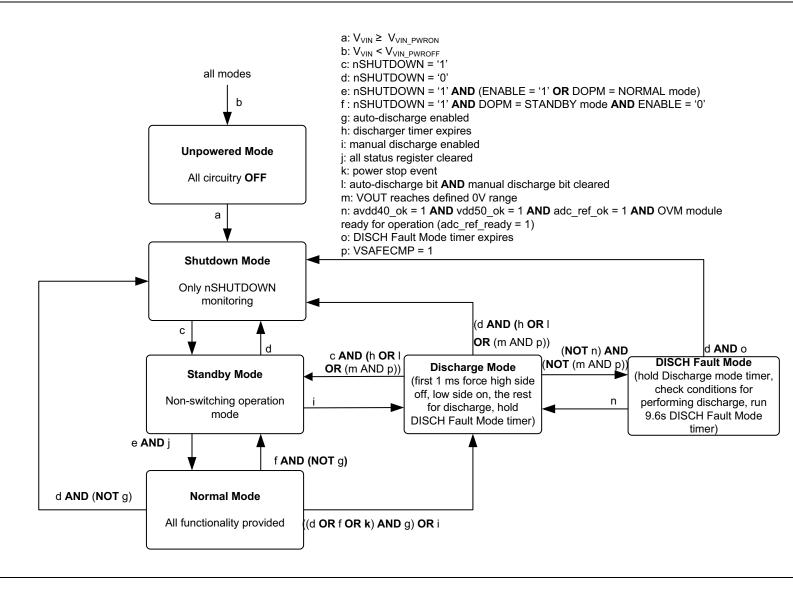

Pin Diagram

input and shall be grounded)8VDD_IODigital interface supply pin9DVDDOutput of the digital voltage regulator. Connect a capacitor to GNDD10GNDDDigital ground11ADCREFAnalog to digital converters reference12GNDAAnalog ground13AVDDOutput of the analog voltage regulator. Connect a capacitor to GNDA14VINChip supply input. Connect a capacitor to GNDA15NCNot connected16NCNot connected17ISPINPositive connection of the input current sense amplifier18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	IABLE 1: MCP19061 PINOUT DESCRIPTION (SUMMARY)							
2 ENABLE Enable pin. Starts the power train 3 ADR0 I ² C address setting pin. Connect a resistor to GNDA 4 SCL I ² C clock 5 SDA I ² C data 6 nALERT Internal events detect pin 7 SYNC Configurable input or output synchronization pin (if not used shall be configure input and shall be grounded) 8 VDD_IO Digital interface supply pin 9 DVDD Output of the digital voltage regulator. Connect a capacitor to GNDD 10 GNDD Digital ground 11 ADCREF Analog to digital converters reference 12 GNDA Analog to digital converters reference 13 AVDD Output of the analog voltage regulator. Connect a capacitor to GNDA 14 VIN Chip supply input. Connect a capacitor to GNDP 15 NC Not connected 16 NC Not connected 17 ISPIN Positive connection of the input current sense amplifier 19 HB1 Bootstrap supply 1. Connect a capacitor between this pin and HS1 20 HG1 Output of the high side driver 1	Pin Number	Pin Name	Description					
3 ADR0 I ² C address setting pin. Connect a resistor to GNDA 4 SCL I ² C clock 5 SDA I ² C data 6 nALERT Internal events detect pin 7 SYNC Configurable input or output synchronization pin (if not used shall be configure input and shall be grounded) 8 VDD_IO Digital interface supply pin 9 DVDD Output of the digital voltage regulator. Connect a capacitor to GNDD 10 GNDD Digital ground 11 ADCREF Analog to digital converters reference 12 GNDA Analog ground 13 AVDD Output of the analog voltage regulator. Connect a capacitor to GNDA 14 VIN Chip supply input. Connect a capacitor to GNDA 14 VIN Chip supply input. Connect a capacitor to GNDP 15 NC Not connected 16 NC Not connection of the input current sense amplifier 19 HB1 Bootstrap supply 1. Connect a capacitor between this pin and HS1 20 HG1 Output of the high side driver 1 21 HS1 Connect to the source of the high side 1 MOS	1	nSHUTDOWN	Shutdown pin. Pull low to put the device in low power mode					
4 SCL i ² C clock 5 SDA i ² C data 6 nALERT Internal events detect pin 7 SYNC Configurable input or output synchronization pin (if not used shall be configure input and shall be grounded) 8 VDD_IO Digital interface supply pin 9 DVDD Output of the digital voltage regulator. Connect a capacitor to GNDD 10 GNDD Digital ground 11 ADCREF Analog to digital converters reference 12 GNDA Analog ground 13 AVDD Output of the analog voltage regulator. Connect a capacitor to GNDA 14 VIN Chip supply input. Connect a capacitor to GNDA 14 VIN Chip supply input. Connect a capacitor to GNDP 15 NC Not connected 16 NC Not connection of the input current sense amplifier 19 HB1 Bootstrap supply 1. Connect a capacitor between this pin and HS1 20 HG1 Output of the high side driver 1 21 HS1 Connect to the source of the high side 1 MOS 22 LG1 Output of the low side driver 1 23	2	ENABLE	Enable pin. Starts the power train					
5SDAI²C data6nALERTInternal events detect pin7SYNCConfigurable input or output synchronization pin (if not used shall be configure input and shall be grounded)8VDD_IODigital interface supply pin9DVDDOutput of the digital voltage regulator. Connect a capacitor to GNDD10GNDDDigital ground11ADCREFAnalog to digital converters reference12GNDAAnalog ground13AVDDOutput of the analog voltage regulator. Connect a capacitor to GNDA14VINChip supply input. Connect a capacitor to GNDP15NCNot connected16NCNot connection of the input current sense amplifier18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	3	ADR0	I ² C address setting pin. Connect a resistor to GNDA					
6 nALERT Internal events detect pin 7 SYNC Configurable input or output synchronization pin (if not used shall be configure input and shall be grounded) 8 VDD_IO Digital interface supply pin 9 DVDD Output of the digital voltage regulator. Connect a capacitor to GNDD 10 GNDD Digital ground 11 ADCREF Analog to digital converters reference 12 GNDA Analog ground 13 AVDD Output of the analog voltage regulator. Connect a capacitor to GNDA 14 VIN Chip supply input. Connect a capacitor to GNDA 15 NC Not connected 16 NC Not connected 17 ISPIN Positive connection of the input current sense amplifier 18 ISNIN Negative connection of the input current sense amplifier 19 HB1 Bootstrap supply 1. Connect a capacitor between this pin and HS1 20 HG1 Output of the high side driver 1 21 HS1 Connect to the source of the high side 1 MOS 22 LG1 Output of the low side driver 1 23 GNDP Power ground	4	SCL	I ² C clock					
7 SYNC Configurable input or output synchronization pin (if not used shall be configure input and shall be grounded) 8 VDD_IO Digital interface supply pin 9 DVDD Output of the digital voltage regulator. Connect a capacitor to GNDD 10 GNDD Digital ground 11 ADCREF Analog to digital converters reference 12 GNDA Analog ground 13 AVDD Output of the analog voltage regulator. Connect a capacitor to GNDA 14 VIN Chip supply input. Connect a capacitor to GNDA 15 NC Not connected 16 NC Not connected 17 ISPIN Positive connection of the input current sense amplifier 18 ISNIN Negative connection of the input current sense amplifier 19 HB1 Bootstrap supply 1. Connect a capacitor between this pin and HS1 20 HG1 Output of the high side driver 1 21 HS1 Connect to the source of the high side 1 MOS 22 LG1 Output of the low side driver 1 23 GNDP Power ground 24 LG2 Output of the low side driver 2	5	SDA	l ² C data					
input and shall be grounded)8VDD_IODigital interface supply pin9DVDDOutput of the digital voltage regulator. Connect a capacitor to GNDD10GNDDDigital ground11ADCREFAnalog to digital converters reference12GNDAAnalog ground13AVDDOutput of the analog voltage regulator. Connect a capacitor to GNDA14VINChip supply input. Connect a capacitor to GNDA15NCNot connected16NCNot connected17ISPINPositive connection of the input current sense amplifier18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	6	nALERT	Internal events detect pin					
9DVDDOutput of the digital voltage regulator. Connect a capacitor to GNDD10GNDDDigital ground11ADCREFAnalog to digital converters reference12GNDAAnalog ground13AVDDOutput of the analog voltage regulator. Connect a capacitor to GNDA14VINChip supply input. Connect a capacitor to GNDP15NCNot connected16NCNot connected17ISPINPositive connection of the input current sense amplifier18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	7	SYNC	Configurable input or output synchronization pin (if not used shall be configured as input and shall be grounded)					
10GNDDDigital ground11ADCREFAnalog to digital converters reference12GNDAAnalog ground13AVDDOutput of the analog voltage regulator. Connect a capacitor to GNDA14VINChip supply input. Connect a capacitor to GNDP15NCNot connected16NCNot connected17ISPINPositive connection of the input current sense amplifier18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	8	VDD_IO	Digital interface supply pin					
11ADCREFAnalog to digital converters reference12GNDAAnalog ground13AVDDOutput of the analog voltage regulator. Connect a capacitor to GNDA14VINChip supply input. Connect a capacitor to GNDP15NCNot connected16NCNot connected17ISPINPositive connection of the input current sense amplifier18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	9	DVDD	Output of the digital voltage regulator. Connect a capacitor to GNDD					
12GNDAAnalog ground13AVDDOutput of the analog voltage regulator. Connect a capacitor to GNDA14VINChip supply input. Connect a capacitor to GNDP15NCNot connected16NCNot connected17ISPINPositive connection of the input current sense amplifier18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	10	GNDD	Digital ground					
13AVDDOutput of the analog voltage regulator. Connect a capacitor to GNDA14VINChip supply input. Connect a capacitor to GNDP15NCNot connected16NCNot connected17ISPINPositive connection of the input current sense amplifier18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	11	ADCREF	Analog to digital converters reference					
14VINChip supply input. Connect a capacitor to GNDP15NCNot connected16NCNot connected17ISPINPositive connection of the input current sense amplifier18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	12	GNDA	Analog ground					
15NCNot connected16NCNot connected17ISPINPositive connection of the input current sense amplifier18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	13	AVDD	Output of the analog voltage regulator. Connect a capacitor to GNDA					
16NCNot connected17ISPINPositive connection of the input current sense amplifier18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	14	VIN	Chip supply input. Connect a capacitor to GNDP					
17ISPINPositive connection of the input current sense amplifier18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	15	NC	Not connected					
18ISNINNegative connection of the input current sense amplifier19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	16	NC	Not connected					
19HB1Bootstrap supply 1. Connect a capacitor between this pin and HS120HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	17	ISPIN	Positive connection of the input current sense amplifier					
20HG1Output of the high side driver 121HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	18	ISNIN	Negative connection of the input current sense amplifier					
21HS1Connect to the source of the high side 1 MOS22LG1Output of the low side driver 123GNDPPower ground24LG2Output of the low side driver 2	19	HB1	Bootstrap supply 1. Connect a capacitor between this pin and HS1					
22 LG1 Output of the low side driver 1 23 GNDP Power ground 24 LG2 Output of the low side driver 2	20	HG1	Output of the high side driver 1					
23 GNDP Power ground 24 LG2 Output of the low side driver 2	21	HS1	Connect to the source of the high side 1 MOS					
24 LG2 Output of the low side driver 2	22	LG1	Output of the low side driver 1					
	23	GNDP	Power ground					
	24	LG2	Output of the low side driver 2					
25 VDD Output of the internal regulator. Connect a capacitor to GNDP	25	VDD	Output of the internal regulator. Connect a capacitor to GNDP					
26 HS2 Connect to the source of the high side 2 MOS	26	HS2	Connect to the source of the high side 2 MOS					
27 HG2 Output of the high side driver 2	27	HG2	Output of the high side driver 2					
28 HB2 Bootstrap supply 2. Connect a capacitor between this pin and HS2	28	HB2	Bootstrap supply 2. Connect a capacitor between this pin and HS2					
29 VOUT Output voltage sense	29	VOUT	Output voltage sense					
30 VOUT_REF Output voltage reference	30	VOUT_REF	Output voltage reference					
31 ISNOUT Negative connection of the output current sense amplifier	31	ISNOUT	Negative connection of the output current sense amplifier					
32 ISPOUT Positive connection of the output current sense amplifier	32	ISPOUT	Positive connection of the output current sense amplifier					
EP EP Exposed Thermal Pad: Heat slug, general device ground (shall be grounded)	EP	EP	Exposed Thermal Pad: Heat slug, general device ground (shall be grounded)					

TABLE 1: MCP19061 PINOUT DESCRIPTION (SUMMARY)

MCP19061 Four Switch Buck Boost Block Diagram

vвus ____1


5 mOhm

÷

-~~~-

-

MCP19061 Mode Control

MCP19061

Table of Contents

Features	1
1.0 Pin Description	7
2.0 Functional Description	9
3.0 Electrical Characteristics	11
4.0 Typical Performance Curves	17
5.0 Configuring the MCP19061	
6.0 Register Organization	20
7.0 Packaging Information	74
Appendix A: Revision History	79
Product Identification System	81
Worldwide Sales and Service	84

1.0 **PIN DESCRIPTION**

The description of pins for the 32-Lead VQFN package (summary) is listed in Table 1. The location of the pins and pad are shown in the Pin Diagram. A detailed pin description can be found below.

1.1 Detailed Pin Functional Description

1.1.1 nSHUTDOWN PIN

nSHUTDOWN pin forces the device in low power shutdown mode when pulled down.

1.1.2 ENABLE PIN

ENABLE pin starts the power train when pulled high.

1.1.3 ADR0 PIN

ADR0 pin sets the I2C address of the device. Connect a resistor to GND.

1.1.4 SCL PIN

SCL pin is the clock of the I2C bus.

1.1.5 SDA PIN

SCL pin is the data of the I2C bus.

1.1.6 nALERT PIN

nALERT pin is an open drain pin. It is pulled low when an enabled internal event is detected.

1.1.7 SYNC PIN

SYNC pin, when enabled, is used to synchronize the switching frequency and phase of multiple devices. It may be configured as input or output.

1.1.8 VDD_IO PIN

VDD_IO is the digital interface supply pin. The voltage on this pin sets the logic levels on all digital pins. Connect a capacitor between this pin and the GNDD.

1.1.9 DVDD PIN

DVDD is the output of the digital voltage regulator. Connect a capacitor to GNDD.

1.1.10 GNDD PIN

GNDD is the digital ground connection pin.

This pin should be connected to the exposed pad on the bottom of the package.

1.1.11 ADCREF PIN

ADCREF is the output of the ADC reference. Connect a capacitor to GNDA.

1.1.12 GNDA PIN

GNDA is the small signal ground connection pin.

This pin should be connected to the exposed pad on the bottom of the package.

1.1.13 AVDD PIN

AVDD is the output of the analog voltage regulator. Connect a capacitor to GNDA.

1.1.14 VIN PIN

Input power connection pin of the device. It is recommended that capacitance be placed between this pin and the GND pin of the device.

1.1.15 NC PIN

Connect to GND.

1.1.16 NC PIN

Connect to GND.

1.1.17 ISPIN PIN

The noninverting input to internal input current-sense amplifier, typically used to differentially remote-sense the input current on a high side shunt.

1.1.18 ISNIN PIN

The inverting input to internal input current-sense amplifier, typically used to differentially remote-sense the input current on a high side shunt.

1.1.19 HB1 PIN

Connect the bootstrap capacitor between this pin and the HS1 pin. The PCB trace connecting the bootstrap capacitor must be of minimal length and appropriate width to handle the high-peak drive currents and fast voltage transitions.

1.1.20 HG1 PIN

Connect the gate of the high-side 1 MOSFET to this pin. The PCB trace connecting HG1 to the gate must be of minimal length and appropriate width to handle the high-peak drive currents and fast voltage transitions.

1.1.21 HS1 PIN

Connect the source of the high-side 1 MOSFET to this pin. The PCB trace connecting HS1 to the gate must be of minimal length and appropriate width to handle the high-peak drive currents and fast voltage transitions.

1.1.22 LG1 PIN

Connect the gate of the low-side 1 MOSFET to this pin. The PCB trace connecting LG1 to the gate must be of minimal length and appropriate width to handle the high-peak drive currents and fast voltage transitions.

1.1.23 GNDP PIN

Connect all large-signal level ground returns to GNDP. These large-signal level ground traces should have a small loop area and minimal length to prevent coupling of switching noise to sensitive traces.

This pin should be connected to the exposed pad on the bottom of the package.

1.1.24 LG2 PIN

Connect the gate of the low-side 2 MOSFET to this pin. The PCB trace connecting LG2 to the gate must be of minimal length and appropriate width to handle the high-peak drive currents and fast voltage transitions.

1.1.25 VDD PIN

The output of the internal +5.0V regulator is connected to this pin. It is recommended that a 1.0 μ F minimum/ 10 μ F maximum bypass capacitor be connected between this pin and the GND pin of the device. The bypass capacitor should be physically placed close to the device.

1.1.26 HS2 PIN

Connect the source of the high-side 2 MOSFET to this pin. The PCB trace connecting HS2 to the source must be of minimal length and appropriate width to handle the high-peak drive currents and fast voltage transitions.

1.1.27 HG2 PIN

Connect the gate of the high-side 2 MOSFET to this pin. The PCB trace connecting HG2 to the gate must be of minimal length and appropriate width to handle the high-peak drive currents and fast voltage transitions.

1.1.28 HB2 PIN

Connect the bootstrap capacitor between this pin and the HS2 pin. The PCB trace connecting the bootstrap capacitor must be of minimal length and appropriate width to handle the high-peak drive currents and fast voltage transitions.

1.1.29 VOUT PIN

Output voltage sensing pin. Connect this pin to the output of the power supply.

1.1.30 VOUT_REF PIN

Output remote ground sensing pin. Connect this pin to the load GND.

1.1.31 ISNOUT PIN

The inverting input to the internal output current-sense amplifier, typically used to differentially remote-sense the output current on output high side shunt.

Caution:	Do not filter this pin voltage, results may
	be unpredictable!

1.1.32 ISPOUT PIN

The noninverting input to the internal output current-sense amplifier, typically used to differentially remote-sense the output current on output high side shunt.

Caution:	Do not filter this pin voltage, results may
	be unpredictable!

1.1.33 EXPOSED PAD (EP)

The exposed pad is used for GND connection and thermal dissipation. Connect the exposed pad to GND.

2.0 FUNCTIONAL DESCRIPTION

2.1 Linear Regulators

The operating input voltage for the MCP19061 ranges from +4.5V to +36V. The internal 5V LDO provides bias voltage for integrated MOSFET drivers and also can be used to bias additional external circuitry. Care should be exercised to avoid LDO overload. The output of the LDO is monitored and specific fault is generated in case of malfunction.

The internal 4V regulator provides bias voltage for the analog circuitry. The internal 1.8V regulator provides bias voltage for the digital core.

The bits that monitor the functionality of the LDOs are located in STASYS register. For each regulator, a decoupling capacitor must be connected between output pin and ground (4.7 μ F/25V X7R ceramic capacitor).

2.2 ADCREF

An accurate reference voltage is internally provided for all voltage and current measurements and settings. A decoupling capacitor (recommended 1 μ F/25V X7R, ceramic) must be connected to the ADCREF output pin.

2.3 Output Drive Circuitry

The MCP19061 integrates two low side and two high side drivers used to drive 4 external N-Channel power MOSFETs in a 4 switch buck-boost configuration. The floating MOSFET gate is connected to the HGx pin. The source of this MOSFET is connected to HSx pin. The low side MOSFET gate is connected to LGx pin and the source is connected to GNDP. The output drivers dead time is set with the DT<4:0> bits in the SWFRQCON1 Register, Register 6-20.

2.4 Current Sense

The input and output currents are differentially sensed by the MCP19061. The output current sense amplifier is optimized for 5 m Ω shunt resistors.

Caution: Do not insert differential or common mode filters in the input of the current sense amplifiers or unexpected behavior may occur. The traces connecting the CSA inputs with the shunts must be carefully differential routed to avoid noise coupling.

2.5 Voltage Sense

The MCP19061 measures both input and output voltages with fast ADCs. The values may be reported via the I^2C and are used by the internal state machine to control and protect.

The input voltage is measured on the VIN pin.

The output voltage is differentially measured between the VOUT and the VOUT_REF pins. It is recommended to route the VOUT and the VOUT_REF pins differentially to the output connections and to insert an RC filter between. Use 100Ω series resistor and compute the capacitor to have the same RC as the output bulk capacitor/ESR:

$$C = \frac{Output Cap \times ESR}{100}$$

2.6 Power Control Circuitry

The internal driver control of the MCP19061 is comprised of a digital control loop, four fast ADCs, several calibration circuits and several analog comparators.

The input and output voltages and currents are sampled by the four analog to digital converters. The digital converted values are corrected as offset and gain in digital blocks.

The corrected ADC values are compared to the target values by the digital modulator that generates the PWM signals accordingly.

The same corrected ADC values and several other digitized analog signals are used by the configurable digital protection circuit to alert the user and/or stop the power train if undesired events occur.

The control loop parameters are set in the following registers:

- BCKGPI Register 6-3 sets the buck control loop gain.
- BSTGPI Register 6-4 sets the boost control loop gain.
- SLOPCOMP Register 6-6 sets the factor for calculating the slope compensation value.
- SYSCAP Register 6-5 must be set in accordance to the used output capacitance and switching frequency.
- LC Register 6-23 must be set in accordance to the used inductor value.

Caution: Loop control registers can be written only when the power train is stopped!

Caution: Not using the recommended values for the loop parameters may lead to unpredictable results!

2.7 Output Regulation

The MCP19061 regulates both output voltage and output current. If both are enabled, the mode transition is seamless.

Output voltage set point must be written in the VREF<11:0> bits in the VREF Register 6-18.

Output current set point must be written in the IREF<11:0> in the IREF Register 6-19.

Output current regulation may be disabled by setting low the IREGEN bit in the COMPMODE Register 6-32.

2.8 PLL Control

The MCP19061 is internally clocked by a PLL (Phase Lock Loop) multiplied ring oscillator.

The source of this clock may be an internal 1.8 MHz oscillator or the SYNC pin. The selection is made in the PLLCON Register 6-35.

The ring oscillator optimum frequency is 36 MHz. The multiplication factor shall be set with the PLLPR bits in the PLLCON Register 6-35.

The recommended value of the ring oscillator is 36 MHz, therefore the PLLPR value shall be set to 0x4F, if the internal clock is selected, or to (36 MHz/SYNC frequency - 1), if external synchronization is needed.

The PLLCON Register 6-35 cannot be modified if any function needing the 36 MHz clock is enabled: power switching, discharge, ADC reading.

2.9 PWM Frequency

The switching frequency of the MCP19061 can be set in the SWFREQ2 Register 6-21.

To reduce EMI, the frequency may be user-selectable dithered. Dithering may be enabled by setting the DITHER bit in the SWFRQCON1 Register 6-20 and configured in the DITHER Register 6-22.

2.10 Synchronization

MCP19061 may output it's PWM frequency on the SYNC pin to allow the synchronization of other devices. To enable the sync function and set its direction the AUTORVB, CLKOUTEN and CLKSRC bits in the PLLCON Register 6-35 must be set.

MCP19061 may also synchronize it's PWM frequency to an external 300 kHz to 500 kHz input on SYNC pin. The PWM signal may have a programmable phase. The requested values to set the frequency parameters must be written in the PLLCON Register 6-35, SWFRQCON1 Register 6-20 and SWFRQCON2 Register 6-21.

Caution: All frequency related registers can be written only when the power train is stopped!

2.11 Temperature Management

To protect the MCP19061 from overtemperature conditions, a 150°C (min.) junction temperature thermal shutdown has been implemented. When the junction temperature reaches this limit, the device disables the output drivers. When the junction temperature is reduced by 20°C (typ.), output drive switching can be re-enabled after clearing the corresponding overtemperature flag.

2.12 USB Specific Circuits

2.12.1 OUTPUT DISCHARGE

The output discharge circuit will remove the charge stored in the output capacitor at each power stop. The output voltage of the power supply is reduced to VSafe0 in less than 600 ms. Once any of the above conditions is met the discharge stops. The function is automatic, occurring each time the device is disabled or shutdown if the AUTODSCH bit in the MODECON Register 6-34 is set. A discharge may be initiated at any moment, if the output power is stopped, setting high the MANUDSCH bit in the MODECON Register 6-34. If the discharge did not succeed to drop the output voltage below VSafe0 in 600 ms the DISCHFAIL flag in the STASYS Register 6-41 is set.

2.12.2 OVERLOAD DETECTION

The MCP19061 detects an overload condition in accordance with the USB-PD and Apple peripheral requirements allowing high peak currents to pass for a given time. The overload profile and maximum current can be set in the USBOLD Register 6-27. The overload detection will set the OCROC in the STABB Register 6-42.

2.12.3 SHORT CIRCUIT DETECTION

In accordance with the USB-PD requirements, MCP19061 detects short circuit by entering in the current regulation mode and checking if the output voltage dropped bellow 2V. The detection of the short will set the OCRSC flag in the STABB Register 6-42.

2.12.4 OUTPUT VOLTAGE RISE/FALL WITH CONTROLLED SPEED

MCP19061 controls the speed of all the changes in the output voltage. The maximum speed is $30 \text{ mV/}\mu\text{s}$ in accordance with USB-PD, but can be set lower with the VRAMP<3:0> from the VREF Register 6-18.

2.12.5 OUTPUT RESISTANCE IN STAND-BY OR SHUTDOWN

If the power train is stopped, the impedance of the MCP19061 at the VOUT connections exceeds 200K, thus allowing the detection of released line without needing a disconnect switch.

3.0 ELECTRICAL CHARACTERISTICS

3.1 ABSOLUTE MAXIMUM RATINGS[†]

V _{VIN} , V _{ISPIN} , V _{ISNIN} , V _{HS1} (DC) V _{HG1} , V _{HB1} (DC) V _{VOUT} , V _{ISPOUT} , V _{ISNOUT} , V _{HS2} (DC) V _{HB2} , V _{HG2} (DC) V _{LG1} , V _{LG2} (DC) V _{HGx} -V _{HSx} , V _{HBx} -V _{HSx} V _{DVDD} (DC) V _{VDD_IO} , V _{VDD} , V _{AVDD} , V _{ADCREF} , (DC) V _{ISPIN} -V _{VIN} (DC) V _{ISNIN} -V _{VIN} (DC) V _{ISNIN} -V _{VIN} , (Transient, <100 nsec)	0.3V to +40V 0.3V to +45.5V 0.3V to +5.5V 0.3V to +5.5V 0.3V to +5.5V 0.3V to +5.5V 2V to +2V 36.7V to +5.5V 42V to +5.5V
V _{ISPIN} -V _{VIN} (DC)	2V to +2V
V _{ISNIN} -V _{VIN} ,(Transient, <100 nsec)	42V to +5.5V
V _{ISPOUT} -V _{VOUT} , _{VISNOUT} -V _{VOUT} ,(DC)	
Differential DC voltage among GNDD, GNDA, GNDP and GNDEP (exposed die pad)(DC)	0.3V to +0.3V
V _{VOUT_REF} (DC)	0.3V to +0.5V
nSHUTDOWN	0.3V to V _{IN}
Maximum Voltage: Any Logic Pin	0.3V to +5.5V
Storage Temperature	55°C to +150°C
Operating Junction Temperature	

ESD Protection on All Pins:

HBM) kV
CDM	50V

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

3.2 Electrical Characteristics

Electrical Specifications: Unless otherwise noted, V _{IN} = 13V, F _{SW} = 450 kHz, T _J = +25°C. Boldface specifications	5
apply over the T _J range of -40°C to +125°C.	

11 3 3 3						
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Input						
Input Voltage	V _{IN}	6	_	36	V	
UVLO Release Level		5.05	5.3	5.55	V	Voltage rising
UVLO Reset Level	—	4.05	4.3	4.55	V	Voltage falling
Input Quiescent Current	Ι _Q	—	—	15	mA	Not switching
Shutdown Current	I _{SHDN}			10	μA	
Logic Interface Suppl	y Input					
Peripheral Voltage	V _{VDD_IO}	2.7	—	5.3	V	
Peripheral Voltage Startup Threshold	_	2.55	—	2.75	V	Voltage rising
Peripheral Voltage Turnoff Threshold	—	2.35	—	2.55	V	Voltage falling

Note 1: V_{DD} is the voltage present at the VDD pin.

2: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential between V_{IN} and V_{DD} .

Electrical Specifications: Unless otherwise noted, V_{IN} = 13V, F_{SW} = 450 kHz, T_J = +25°C. **Boldface** specifications apply over the T_J range of -40°C to +125°C.

apply over the T _J range	e of -40°C to +125°C	-				
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Input Quiescent Current	IQ_VDD_IO	—	6	10	μA	Not switching
Shutdown Current	I _{SHDN_VDD_IO}	_	_	1	μA	
Linear Regulator V _{DD}					- 1	
Decoupling Capacity	CV _{DD}	3.3	4.7	10	μF	
Internal Circuitry Bias Voltage	V _{DD}	4.79	5	5.29	V	V _{IN} = 6.0V to 36V, I _{OUT} = 65 mA
Maximum External V _{DD} Output Current	I _{DD_OUT}	—	—	65	mA	V _{IN} = 6.0V to 36V (Note 1)
Line Regulation	ΔV _{DD-OUT} / (V _{DD-OUT} * ΔV _{IN})	—	—	0.5	%/V	6.0V ≤ V _{IN} ≤ 36V (Note 1)
Load Regulation	ΔV _{DD-OUT} / V _{DD-OUT}	—	—	0.5	%	I _{DD_OUT} = 1 mA to 65 mA (Note 1)
Output Short-Circuit Current	I _{DD_SC}	70	—	130	mA	V _{IN} = 6V to 36V (Note 1)
Dropout Voltage	V _{IN} – V _{DD}	_	—	0.6	V	I _{DD_OUT} = 20 mA, VDD = 4.5V (Notes 1 and 2)
Power Supply Rejection Ratio	PSRR _{LDO}	_	60	_	dB	f = 100 Hz, 10 KHz, 100 KHz I _{DD_OUT} = 5 mA, 20 mA, 60 mA
Analog Linear Regula	ator AV _{DD}					
Decoupling Capacity	CA _{DD}	3.3	4.7	10	μF	
Internal Analog Supply Voltage	AV _{DD}	4.026	4.096	4.166	V	
Line Regulation	_	_	_	0.5	%	
Load Regulation	_	_	_	0.5	%	
Digital Linear Regula	tor DV _{DD}					,
Decoupling Capacity	CDV _{DD}	3.3	4.7	10	μF	
Internal Digital Supply Voltage	DV _{DD}	1.824	1.866	1.907	V	
Line Regulation	_	_	_	0.5	%	
Load Regulation	_		_	0.5	%	
Internal ADC Reference	ADCREF	2.033	2.048	2.062	V	
Output Voltage Monit	or					
Resolution	nbits	_	12	_	bits	
Step Size		_	10	_	mV	
Full-scale Range	FSR	0	_	40	V	

Note 1: V_{DD} is the voltage present at the VDD pin.

2: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential between V_{IN} and V_{DD}.

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Tolerance	OVM_TOL	-2	—	2	%	V _{OUT} = 3 to 36V
V _{OUT REF} Range	_	-300	_	500	mV	
Output Current Monito	or		- I		-	
Resolution	nbits	_	12	_	bits	
Step size			5	_	mA	5 mΩ shunt
Full-scale range	FSR	0	—	15	Α	5 mΩ shunt
T 1		-2.5	_	2.5	%	I _{OUT} = 3 to 5A
Tolerance	OCM_TOL	-7.5/I _{OUT}	_	7.5/I _{OUT}	%	I _{OUT} = 1 to 3A
Input Voltage Monitor		· · · · ·	J			
Resolution	nbits		12	_	bits	
Step Size		_	10		mV	
Full-scale Range	FSR	_		40	V	
Tolerance	IVM_TOL	-2	_	2	%	
Output Impedance						
Output Resistance	R _{OUT}	200		_	kΩ	Power train stopped
Output Current Sense						
Input Offset Voltage	V _{OS}	-3		3	LSB	Digitally corrected
Gain Error		-3		3	LSB	Digitally corrected
Differential Sense Range	—	-16	—	76.8	mV	DC
Differential Sense Range	—	-64	-	300	mV	Peak
Input Differential Impedance	—	_	2K 12p	_	Ω F	
Input Common Mode Impedance	—	_	5M 6p	_	Ω F	
Gain-Bandwidth Product	GBWP	300	—	_	kHz	
Common-Mode Range	V _{CMR}	-0.3	—	36	V	
Common-Mode Rejection Ratio	CMRR	100	120	—	dB	
Amplifier PSRR	PSRR	60	80		dB	
Input Current Monitor						
Input Offset Voltage	V _{OS}	-18	_	18	mV	
Differential Sense Range	_	0	—	1.218	V	
Gain		0.995	_	1.005		
Input Differential Impedance	_	-	20K 6p	_	Ω F	

Note 1: V_{DD} is the voltage present at the VDD pin.

2: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential between V_{IN} and V_{DD} .

Electrical Specifications: Unless otherwise noted, $V_{IN} = 13V$, $F_{SW} = 450$ kHz, $T_J = +25^{\circ}$ C. **Boldface** specifications apply over the T_J range of -40°C to +125°C.

apply over the T _J range	of -40°C to +125°	C.				1
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Input Common Mode Impedance		_	5M 6p		Ω∥F	
Gain-Bandwidth Product	GBWP	14.4	—	—	MHz	
Common-Mode Range	V _{CMR}	-0.3	—	42	V	
Common-Mode Rejection Ratio	CMRR	90	120	—	dB	
Amplifier PSRR	PSRR	59.9	80	—	dB	
Output Drivers						
Gate Drive Source Resistance	R _{DR-SRC}	_	—	4	Ω	V _{DR} = 4.5V, measured at 100 mA
Gate Drive Sink Resistance	R _{DR-SINK}	_	—	2	Ω	V _{DR} = 4.5V, measured at 200 mA
Rise Time	T _{RL}	—	—	50	ns	V _{DR} = 4.5V, C _{LOAD} = 3.3 nF
Fall Time	T _{FL}	—	—	50	ns	V _{DR} = 4.5V, C _{LOAD} = 3.3 nF
High Side Driver Minimum On Time	—	50	—	_	ns	V _{DR} = 4.5V
High Side Driver Leakage Current	—	_	_	15	μA	V _{DR} = 4.5V
Bootstrap Circuits						
Undervoltage High Threshold	V _{BTUVH}	4.1	_	4.3	V	
Undervoltage Low Threshold	V _{BTUVL}	3.6	—	3.8	V	
Bootstrap Switch Resistance	R _{BTSW}	_	—	10	Ω	
Dead-Time Adjustmen	t					
Resolution	DT _{RES}	_	3.5	_	ns	
Dead-Time Adjustable Range	DT _{RANGE}	4	—	55	ns	
PWM						
Default Frequency	F _{SW}	436	450	464	kHz	Factory setting
Synchronization Range	F _{SW_SYNC}	300	—	600	kHz	±15% around internal set point
Synchronization Duty Cycle		10	—	90	%	
Spread Spectrum Range	F _{SS}	-7	—	7	%	

Note 1: V_{DD} is the voltage present at the VDD pin.

2: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential between V_{IN} and V_{DD} .

	naracteristics	ise noted, V _{IN} =		_{SW} = 450 kHz, 1	Г _Ј = +25	°C. Boldface specifications
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Output Discharge						
Output Discharge Current	I _{DIS}	90	—	150	mA	2V to 36V
VSafe0 Threshold	VSafe0	0.581		0.712	V	
SYNC, ENABLE, nALE	ERT, nSHUTDOW	N Pins				
Input High Threshold	V _{LOGIC_HI_IN}	0.7*VDDIO			V	
Input Low Threshold	V _{LOGIC} LO_IN	—		0.3*VDDIO	V	
nSHUTDOWN Input High Threshold	V _{LOGIC_HI_IN}	1.2	_		V	
nSHUTDOWN Input Low Threshold	V _{LOGIC_LO_IN}		—	0.4	V	
Output Low Voltage	V _{LOGIC_LO_OUT}	—		0.4	V	I _{OL} = 3 mA
SYNC Output High Voltage	V _{GPIO_OH}	V _{DD} – 0.4	—	—	V	I _{OH} = 3 mA
nSHUTDOWN and ENABLE Deglitch Time	GPIO_I _{IL}	1	2	4.5	μs	
l ² C	L	1 1				I
I ² C Input High Threshold	V _{I2C_H_IN}	0.7*VDD_IO	_	_	V	
I ² C Input Low Threshold	V _{I2C_L_IN}	-0.5	—	0.3*VDD_IO	V	
SCL Clock Frequency	f _{SCL}	100		1000	kHz	(Note 3)
I ² C Output Low Voltage	V _{I2C_L_OUT_1}	0	_	0.4	V	(Open-drain) at 3 mA sink current; VDD_IO > 2.7V (Note 3)
Bus Free Time between a STOP and START Condition	t _{BUF}	0.5	_	_	μs	(Note 3)
Hold Time (Repeated) START Condition	t _{HD(STA)}	260	_	_	ns	(Note 3)
Low Period of the SCL Clock	t _{LOW}	0.5	_	_	μs	(Note 3)
High Period of the SCL Clock	t _{HIGH}	260	—	_	ns	(Note 3)
Setup Time for a Repeated START Condition	t _{SU(STA)}	260	_	_	ns	(Note 3)
Data Setup Time	t _{SU(DAT)}	50	_	—	ns	(Note 3)
Data Hold Time	t _{HD(DAT)}	0	_	_	μs	(Note 3)
Rise Time of SCL Signal	t _{RCL}	_	_	120	ns	(Note 3)

Note 1: V_{DD} is the voltage present at the VDD pin.

2: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential between V_{IN} and V_{DD}.

Electrical Specifications: Unless otherwise noted, $V_{IN} = 13V$, $F_{SW} = 450$ kHz, $T_J = +25^{\circ}$ C. **Boldface** specifications apply over the T_J range of -40°C to +125°C.

apply over the T _J range of -40°C to +125°C.ParametersSym.Min.Typ.Max.UnitsConditions												
Sym.	Min.	Тур.	Max.	Units	Conditions							
t _{FCL}	_	_	120	ns	(Note 3)							
t _{RDA}	_	—	120	ns	(Note 3)							
t _{FDA}	_	_	120	ns	(Note 3)							
t _{SU(STO)}	260	—	—	ns	(Note 3)							
C _B	_	_	550	pF	(Note 3)							
I _{ADR0}	49	50	51	μΑ	Current source on communication address set pin. Max pin voltage = 2.0V.							
t _{VD;DAT}	_	_	0.45	μs	The maximum $t_{HD(DAT)}$ must be less than the maximum of $t_{VD;DAT}$ or $t_{VD;ACK}$ by a transition time. (Note 3)							
I _{OL}	20	_	_	mA	VOL = 0.4V							
t _{SP}	0	_	50	ns	(Note 3)							
li	-10		10	μA								
		<u>.</u>										
T _{SHD_SD}	150	160	170	°C								
T _{SHD_REL}	117		145	°C								
	Sym. t _{FCL} t _{RDA} t _{FDA} t _{SU(STO)} C _B l _{ADR0} t _{VD;DAT} l _{OL} li T _{SHD_SD}	Sym. Min. t_{FCL} t_{RDA} t_{FDA} t_{FDA} 260 C_B I_{ADR0} 49 $t_{VD;DAT}$ I_{OL} 20 t_{SP} 0 Ii -10	Sym. Min. Typ. t_{FCL} t_{RDA} t_{FDA} t_{FDA} 260 $t_{SU(STO)}$ 260 C_B l_{ADR0} 49 50 $t_{VD;DAT}$ l_{OL} 20 t_{SP} 0 l_{i} -10	Sym. Min. Typ. Max. t_{FCL} -120 t_{RDA} -120 t_{FDA} 120 t_{FDA} -120 $t_{SU(STO)}$ 260 C_B -550 I_{ADR0} 49 50 51 $t_{VD;DAT}$ 0.45 l_{OL} 20 t_{SP} 0 50 Ii -10 10 10 T_SHD_SD 150 160 170	Sym. Min. Typ. Max. Units t_{FCL} 120 ns t_{RDA} 120 ns t_{FDA} 120 ns t_{FDA} 120 ns $t_{SU(STO)}$ 260 ns $t_{SU(STO)}$ 260 ns $t_{SU(STO)}$ 260 ns $t_{SU(STO)}$ 260 ns t_{ADRO} 49 50 51 μA $t_{VD;DAT}$ mA t_{SP} 0 50 ns ii -10 10 μA							

Note 1: V_{DD} is the voltage present at the VDD pin.

2: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value measured at a 1V differential between V_{IN} and V_{DD}.

3: These parameters are characterized, but not production tested.

3.3 Thermal Specifications

Parameters	Sym.	Min.	Тур.	Max.	Units
Temperature Ranges					
Operating Junction Temperature Range	Т _Ј	-40	—	+125	°C
Maximum Junction Temperature	Т _Ј		—	+150	°C
Storage Temperature Range	Τ _Α	-65	—	+150	°C
Thermal Package Resistances					
Thermal Resistance, 32L-QFN 5x5	θ_{JC}		_	30	°C/W

4.0 **TYPICAL PERFORMANCE CURVES**

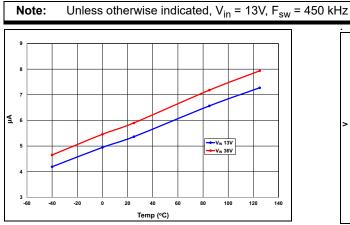


FIGURE 4-1: Input Current Consumption in Shutdown Mode (ENABLE = 0, nSHUTDOWN = 0).

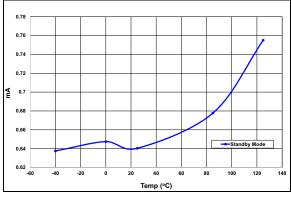
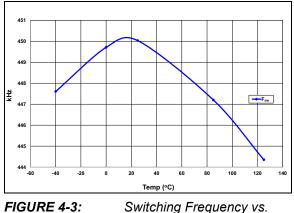
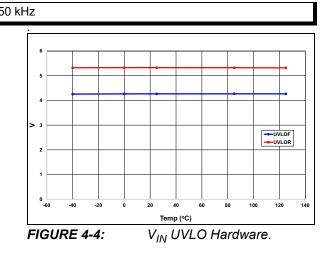




FIGURE 4-2: Input Current Consumption in Standby Mode (ENABLE = 0, nSHUTDOWN = 1).

Temperature

Switching Frequency vs.

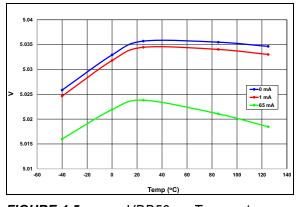
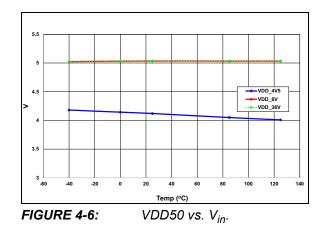



FIGURE 4-5:

VDD50 vs. Temperature.

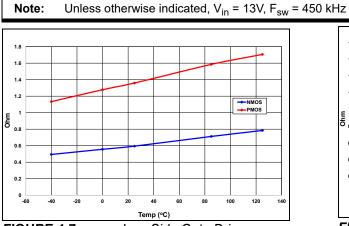
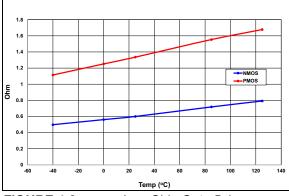



FIGURE 4-7:Low Side Gate DriveResistance on Buck Leg vs. Temperature.

FIGURE 4-8: Low Side Gate Drive Resistance on Boost Leg vs. Temperature.

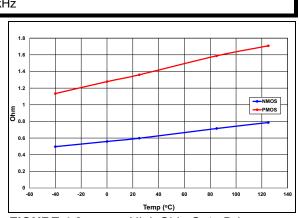
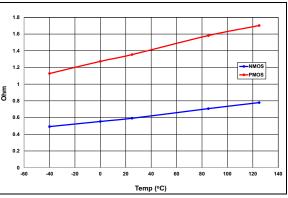



FIGURE 4-9:High Side Gate DriveResistance on Buck Leg vs. Temperature.

FIGURE 4-10: High Side Gate Drive Resistance on Boost Leg vs. Temperature.

5.0 CONFIGURING THE MCP19061

The MCP19061 device is a digital power controller. The device configuration is handled through register settings instead of adding external components.

The following sections detail how to set the control registers for all the configurable parameters.

5.1 I²C Communication

The l^2C module is digital except for the address setting pin interface. It accepts commands and responds with internal information when requested by an external initiator.

The I²C speeds are 100 kHz, 400 kHz and 1 MHz.

The address can be externally set using a pin on the device.

The protocol is similar to simplified SMBUS, 16-bit word only, with PEC. The MCP19061 is not SMBus compatible in all requirements.

An open drain nALERT pin is provided. The MCP19061 pulls down this pin when a non-masked event is detected.

There are only 2 command types, "READ" and "WRITE". Both are initiated by an external device.

All commands are in fact the addresses of the registers inside the MCP19061 that must be read or written.

A write command looks like in the Figure 5-1.

A read command looks like in Figure 5-2

The default I^2C chip address is set by external resistor connected between ADR0 pin and GND. See Register 6-36 (I^2C Address Setting Register) and Table 6-2 (I^2C Address Resistor Selection).

1	7	1	1	8	1	8	1	8	1	8	1	1
S	Device Address	Wr	А	Command Code	А	Data Byte	А	Data Byte	А	PEC	А	Ρ

FIGURE 5-1: Write Command.

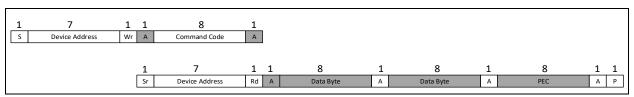


FIGURE 5-2: Read Command.

6.0 **REGISTER ORGANIZATION**

There are several types of registers in the MCP19061:

- · Identification register
- · Configuration setting registers
- Reporting registers
 - Measurement result registers
 - Status registers
- · User registers
- Save/restore register

6.1 Identification Register

The identification Register 6-1 CHIP_REV_ID contains the chip ID and revisions version. The information is read-only.

The address of Register 6-1 CHIP_REV_ID is 01h.

6.2 Configuration Setting Registers

The configuration setting registers are readable and writable. The addresses range is 04h to 27h.

The content of these registers may be saved and restored in the NVM.

They are used to configure:

- communication
- operation mode of the power supply
- startup
- protections behavior and detection levels
- output parameters
- feedback loop parameters
- USB-PD features

6.3 Reporting registers

There are 2 types of reporting registers:

6.3.1 RESULT REGISTERS

6.3.1.1 Measurement Result Registers

These registers are read only and contain the results of different measurements and detections. Both raw and corrected results are available.

The measurement result registers are located at addresses from 60h to 67h.

6.3.1.2 Error Comparators Result Registers

IVMOUT Register 6-45 (address 5Ch), OOUT1 Register 6-46 (address 5Dh) and OOUT2 Register 6-47 (address 5Eh) contains the unlatched outputs of the error comparators.

These registers are read-only.

6.3.2 STATUS REGISTERS

STASYS Register 6-41 (address 58h) and STABB Register 6-42 (address 59h) contain the error and event flags.

The NVMSTAT Register 6-43 (address 5Ah) contains the NVM relevant status bits.

The RFLAG Register 6-44 (address 5Bh) contains the regulation mode flags.

The CRC Register 6-2 (address 03h) displays the CRC for the calibration and configuration sections of the NVM.

The status registers, with the exception of the CRC register, are readable and erasable. The CRC register is only readable.

6.4 User Registers

The MCP19061 includes 4 general purpose registers, the GPRA Register 6-37 (address 28h), GPRB Register 6-38 (address 29h), GPRC Register 6-39 (address 2Ah), GPRD Register 6-40 (address 2Bh).

The user may store arbitrary information inside these registers and read it back.

These registers are volatile and not stored in the NVM.

6.5 Save/restore register

The save/restore NVMCTRL Register 6-52 address is 70h.

The user may save all the configuration registers in NVM to avoid re-writing them at the power up. To do this, the WSTART bit in the NVMCTRL Register 6-52 shall be set high. The bit will automatically reset when the operation is completed. The save operation can be done only in standby mode.

The configuration will be automatically reloaded at power up.

User may also restore the saved configuration any time by setting high the RSTART bit in the NVMCTRL Register 6-52. The bit will automatically reset when the operation is completed.

6.6 List of Registers

The complete list of registers can be found below.

Addr.	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01h	CHIP_REV_ID Register 6-1				CHIP_C	ODE [7:0]					ANA_RE	V_ID [3:0]			DIG_RE	/_ID [3:0]	
03h	CRC Register 6-2				CRCCC	ONF [7:0]							CRCC	AL [7:0]			
04h	BCKGPI Register 6-3	—	—	—	—					1	BCKG	PI [11:0]					
05h	BSTGPI Register 6-4	—	—	_	—						BSTG	PI [11:0]					
06h	SYSCAP Register 6-5	—	—	_	—						SYSCA	P [11:0]					
07h	SLOPCOMP Register 6-6								SLOPCC	MP [15:0]							
08h	IVMUVR Register 6-7					IVMU\	/R [9:0]					—	_	_	_	_	_
09h	IVMUVF Register 6-8					IVMU	VF [9:0]					—	_	-	—	-	-
0Ah	IVMOVR Register 6-9					IVMO	IVMOVR [9:0] — —							-	_	—	-
0Bh	IVMOVF Register 6-10					IVMO	VF [9:0]						_	-	_	_	-
0Ch	IVMLDR Register 6-11					IVMLD	DR [9:0]						_	-	_	_	-
0Dh	IVMLDF Register 6-12					IVMLE	DF [9:0]					—	_	—	—	-	-
0Eh	OVMUV Register 6-13				OVMUV	/HY [7:0]							OVMU	VF [7:0]			
0Fh	OVMOV Register 6-14				OVMO\	/HY [7:0]							OVMO	VR [7:0]			
10h	OCROCR Register 6-15					OCRO	CR [9:0]			ļ		—	—	_	—	-	-
11h	OCROCF Register 6-16					OCRO	CF [9:0]					—	_	-	—	-	-
12h	VSAFECMP Register 6-17	—	—	—	—	_							_	-	—	-	VSAFEC MP
13h	VREF Register 6-18						VREF	[11:0]							VRAM	1P[3:0]	
14h	IREF Register 6-19						IREF	[11:0]						—	_	_	_
15h	SWFRQCON1 Register 6-20	SWFRQ ON	DITHER	—			DT [4:0]			—	—	—	—	-	—	—	-

TABLE 6-1: MCP19061 REGISTERS SUMMARY

TABLE 6-1: MCP19061 REGISTERS SUMMARY (CONTINUED)

Addr.	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
16h	SWFRQCON2 Register 6-21				PHASH	HF [7:0]							SWFRC)PR [7:0]			
17h	DITHER Register 6-22	—		DPS [2:0]		DO	WNSLOP [2:0]	DIT- WAVE				MAXD	OC [7:0]			
18h	LC Register 6-23	—	_	—	_						LC [11:0]					
19h	IMSYS Register 6-24	VDDI- OUVM	ADCRE- FUVM	VDD50U VM	AVDD40 UVM	LOSE- CLKSYS M	LOSE- CLK- PLLM	LOS- ESYNC M	DIS- CHFAIL M	UOLDM	_	_	_	_		ITRDLE [2:0)]
1Ah	IMBB Register 6-25	ICMOCM	OCROC M	OCRRE VCM	OCRSC M	VBSTUV M	OVTG- DRM	OVT- VDD50M	OVTA- VDD40M	IVMOVM	IVMUVM	IVMLDM	OVMOV M	OVMUV M	OVMZV M	PLL- PRFM	CRCER RM
1Bh	ADCON Register 6-26				ADCMAN	IDLY [7:0]				—	—	_	—	OCRAD- CON	OCMAD- CON	OVMAD- CON	IVMAD- CON
1Ch	—	_	_	_	_		_	_	_	_	-	_	_	_	_	_	
1Dh	USBOLD Register 6-27	USB_CL	ASS [1:0]			USE	3_FACTOR	[6:0]		USB_BASE [6:0]							
1Eh	IVMCNT Register 6-28	IVI	MUVCNT [2	2:0]	—	—	IV	MLDCNT [2	2:0]	IVMOVCNT [2:0] — —				_	—		
1Fh	OVMVCNT1 Register 6-29	OV	MUVCNT [2:0]	—	—	—	_		OVMOVCNT [2:0]			—	_	_	_	
20h	OVMVCNT2 Register 6-30	OV	/M2VCNT [2	2:0]	—	—	—	_	—	OV	/MSFCNT [2	2:0]	_	—	_	-	
21h	CCNT Register 6-31	ICI	MOCCNT [2	2:0]		IC	MOCSEL [4	:0]		00	ROCCNT [2	2:0]	—	_	OCF	RREVCCNT	[2:0]
22h	COMPMODE Register 6-32	HIDIS	LODIS	—	—	—	_	DRVMC	DE [1:0]	—	_	_	—	—	—	VREGEN	IREGEN
23h	_	_	_	_	_	_	_	—	_	_	_	_	—	_	_	_	_
24h	EVSTOP Register 6-33	—	—	—	—	—	—	—	ORCST	IOVST	IUVST	OOVST	OUVST	IOCST	OOCST	OSHCST	UOLDS
25h	MODECON Register 6-34	—	_	—	—	—	—	MANUD SCH	AUTODS CH	_	_		_	—	_	DOPI	M [1:0]
26h	PLLCON Register 6-35	—	—	—	—	—	AUTORV B	CLK- OUTEN	CLKSRC				PLLP	R [7:0]			
27h	DEVID Register 6-36	—	—	_	—	—	—	—	ADR0EN	—	1	0	1		DEVI	D [3:0]	
28h	GPRA Register 6-37								GPRA	[15:0]							
29h	GPRB Register 6-38								GPRB	[15:0]							
2Ah	GPRC Register 6-39								GPRC	[15:0]							

MCP19061

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

DS20006888B-page 22

								1									
Addr.	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2Bh	GPRD Register 6-40								GPRD	[15:0]							
—	—	—	—	—	—	—	—	_	—	I	_	_		_	—	_	—
58h	STASYS Register 6-41	VDDI- OUV	ADCRE- FUV	VDD50U V	AVDD40 UV	LOSE- CLKSYS	LOSE- CLKPLL	LOS- ESYNC	DIS- CHFAIL	UOLD	—	—	SUFAIL	ACDONE	SUDONE	—	—
59h	STABB Register 6-42	ICMOC	OCROC	OCRRE VC	OCRSC	VBSTUV	OVT- GDR	OVT- VDD50	OVTA- VDD40	IVMOV	IVMUV	IVMLD	OVMOV	OVMUV	OVMZV	PLLPRF	CRCER R
5Ah	NVMSTAT Register 6-43	—	—	-	—	-	—	—	—	-	—	NVM- FAIL	BUSY	CRC- CALOK	CRC- CALF	CRCCO- NFOK	CRCCO- NFF
5Bh	RFLAG Register 6-44	—	—	—	—	—	—	—	—	_	—	—	_	—	—	VRFALG	IRFLAG
5Ch	IVMOUT Register 6-45	—	—	SIVMLD	_	MIVM- LDR	MIVM- LDF	—	_	_	—	SIVMOV	SIVMUV	MIVMOV R	MIVMOV F	MIVMUV R	MIVMUV F
5Dh	OOUT1 Register 6-46	—	—	SOC- ROC	SOC- RREVC	MOCRO CR	MOCRO CF	—	_	_	—	SOVMO V	SOVMU V	MOVMO VR	MOVMO VF	MOVMU VR	MOVMU VF
5Eh	OOUT2 Register 6-47	—	—	SOVM2V	—	—	—	MOVM2 VR	MOVM2 VF	_	—	SOVMSF	_	—	—	MOVMS FR	MOVMS FF
5Fh	OVTSTAT Register 6-48	—	—	—	—	—	—	—	_	_	—	—	OVTSDO	GDR [1:0]	OVTS- DVDD	OVTS- DAVDD	OVTS- DDVDD
64h	IVMCORRES Register 6-49						IVMCORI	RES [11:0]						—	—	—	_
65h	OVMCORRES Register 6-50						OVMCOR	RES [11:0]						—	—	_	_
67h	OCRCORRES Register 6-51		OCRCORRES [11:0]									_	—	_	_		
70h	NVMCTRL Register 6-52	—	_	_	_	_	_		_	_	_	_	_	_	—	RSTART	WSTART
71h	ADCGO Register 6-53	_	—	_	—	_	_	—	_		ASSEL[2:0]]	_	_	—	CTS	GO

TABLE 6-1: MCP19061 REGISTERS SUMMARY (CONTINUED)

Legend: — = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

6.6.1 CHIP_REV_ID REGISTER

The CHIP_REV_ID register is a readable register, which contains chip code and the revision codes of the analog and digital sections. The address is 01h.

REGISTER 6-1: CHIP_REV_ID: CHIP REVISION ID

R-0	R-1	R-1	R-0	R-0	R-0	R-0	R-1
			CHIP_0	CODE <7:0>			
bit 15							bit 8
Legend:							
R = Readable bi	t	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at PO	R	x = Bit is unkr	nown	'0' = Bit is cle	ared		
'1' = Bit is set							

bit 15-8 CHIP_CODE <7:0>: Chip code

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
	ANA_REV	_ID <3:0>			DIG_REV	_ID <3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 ANA_REV_ID <3:0>: Analog circuit revision

bit 3-0 DIG_REV_ID <3:0>: Digital circuit revision

6.6.2 CRC REGISTER

The CRC register is a readable register, which contains CRC codes for accessing the two register sections.

REGISTER 6-2: CRC: CRC REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			CRCCO	NF <7:0>			
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-8 CRCCONF<7:0>: CRC of the configuration register section

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			CRCCA	AL <7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 CRCCAL<7:0>: CRC of the calibration register section

6.6.3 BCKGPI REGISTER

The default and recommended value is: 0x0400.

The BCKGPI register is a readable and writable register containing the buck gain compensation parameter. This register can't be modified while the MCP19061 is enabled.

Caution: Modifying this value affects the regulation loop stability!

REGISTER 6-3: BCKGPI: BUCK GAIN COMPENSATION REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	R/W-0
—	—	_	—	BCKGPI <11:8>			
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-12 Unimplemented: Read as '0'

bit 11-8 **BCKGPI<11:8>:** MSB of the buck gain value

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BCKGPI <7:0>							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-0 BCKGPI<7:0>: LSB of the buck gain value

6.6.4 BSTGPI REGISTER

The BSTGPI register is a readable and writable register containing the boost gain compensation parameter. This register can't be modified while the MCP19061 is enabled.

The default and recommended value is: 0x300.

Caution: Modifying this value affects the regulation loop stability!

REGISTER 6-4: BSTGPI: BOOST GAIN COMPENSATION REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1	R/W-1
—	—	—	—	BSTGPI <11:8>			
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-12 Unimplemented: Read as '0'

bit 11-8 BSTGPI<11:8>: MSB of the boost gain value

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BSTGPI <7:0>							
bit 7							bit 0

_	
11	edend.

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 BSTGPI<7:0>: LSB of the boost gain value

6.6.5 SYSCAP REGISTER

The SYSCAP register is a readable and writable register containing the output capacitance multiplied by the switching frequency. This register can't be modified while the MCP19061 is enabled.

Default value: 0x164

Recommended value: Output capacitance in μ F multiplied by the switching frequency in KHz.

Caution: Modifying this value affects the regulation loop stability!

REGISTER 6-5: SYSCAP: OUTPUT CAPACITOR COMPENSATION REGISTER

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	_	SYSCAP <11:8>			
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-12 Unimplemented: Read as '0'

bit 11-8 SYSCAP<11:8>: MSB of the output capacitor multiplied by the frequency value

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SYSCAP <7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

	bit 7-0	SYSCAP<7:0>: LSB of the output capacitor multiplied by the frequency value
--	---------	--

EQUATION 6-1: SYSCAP FORMULA

 $SYSCAP < 11:0 = HEX(2 \times F_{sw}(MHz) \times C_{out}(\mu F))$

Where:

 F_{sw} = the selected switching frequency

Example:

For a value of 356 μ F, the value is

HEX(2 × 0.5 × 356) = 0x164

6.6.6 SLOPCOMP REGISTER

Default and recommended value: 0x0FDC.

The SLOPCOMP register is a readable and writable register containing the value of the slope compensation parameter. This register can't be modified while the MCP19061 is enabled.

Caution: Modifying this value affects the regulation loop stability!

REGISTER 6-6: SLOPCOMP: SLOPE COMPENSATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-1
SLOPCOMP <15:8>							
bit 15							bit 8
Sit To							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-8 SLOPCOMP<15:8>: MSB of the slope compensation value

R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	
SLOPCOMP <7:0>								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-0 SLOPCOMP<7:0>: LSB of the slope compensation value

6.6.7 IVMUVR REGISTER

Default value: 0x2500

The IVMUVR register is a readable and writable register containing the value of the input undervoltage rising threshold.

REGISTER 6-7: IVMUVR: INPUT UNDERVOLTAGE RISING REGISTER

R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
			IVMU\	/R <9:2>			
bit 15							bit 8
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, read	as '0'	
R = Readable u = Bit is uncha		W = Writable b x = Bit is unkno		U = Unimplen -n = Value at l		as '0'	

bit 15-8 IVMUVR<9:2>: MSB of the input undervoltage rising threshold

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
IVMUVF	R <1:0>	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 IVMUVR<1:0>: LSB of the of the input undervoltage rising threshold

bit 5-0 Unimplemented: Read as '0'

EQUATION 6-2: IVMUVR FORMULA

$$IVMUVR < 9:0> = HEX\left(\frac{1024 \times Input undervoltage rising threshold}{40.96}\right)$$

Default value: 0x2280

6.6.8 IVMUVF REGISTER

The IVMUVF register is a readable and writable register containing the value of the input undervoltage falling threshold.

REGISTER 6-8: IVMUVF: INPUT UNDERVOLTAGE FALLING REGISTER

R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0
IVMUVF <9:2>							
bit 15							bit 8
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-8 **IVMUVF<9:2>:** MSB of the input undervoltage falling threshold

R/W-1	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
IVMUVI	F <1:0>	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **IVMUVF<1:0>:** LSB of the of the input undervoltage falling threshold. It is calculated using Equation 6-3.

bit 5-0 Unimplemented: Read as '0'

EQUATION 6-3: IVMUVF FORMULA

$$IVMUFV < 9:0 > = HEX \left(\frac{1024 \times Input undervoltage falling threshold}{40.96} \right)$$

6.6.9 IVMOVR REGISTER

Default value: 0xFC80

The IVMOVR register is a readable and writable register containing the value of the input overvoltage rising threshold.

REGISTER 6-9: IVMOVR: INPUT OVERVOLTAGE RISING REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
IVMOVR <9:2>							
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-8 IVMOVR<9:2>: MSB of the input overvoltage rising threshold

R/W-1	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
IVMOVI	R <1:0>	—	—	—	—	—	—
bit 7							bit 0

Legend:				
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unch	anged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set		'0' = Bit is cleared		
bit 7-6	IVMOVR<	:1:0>: LSB of the of the inpu	t undervoltage rising threshold (see Equation 6-4)	
bit 5-0	Unimplemented: Read as '0'			

EQUATION 6-4: IVMOVR FORMULA

$$IVMOVR <9:0> = HEX\left(\frac{1024 \times Input \text{ overvoltage rising threshold}}{40.96}\right)$$

6.6.10 IVMOVF REGISTER

Default value: 0xFA00

The IVMOVF register is a readable and writable register containing the value of the input overvoltage falling threshold.

REGISTER 6-10: IVMOVF: INPUT OVERVOLTAGE FALLING REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1	R/W-0
IVMOVF <9:2>							
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-8 IVMOVF<9:2>: MSB of the input undervoltage falling threshold

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
IVMOVI	= <1:0>	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-6 IVMOVF<1:0>: LSB of the of the input undervoltage falling threshold

bit 5-0 Unimplemented: Read as '0'

EQUATION 6-5: IVMOVF FORMULA

$$IVMOVF <9:0> = HEX\left(\frac{1024 \times Input \text{ overvoltage falling threshold}}{40.96}\right)$$

6.6.11 IVMLDR REGISTER

Default value: 0xFC80

The IVMLDR register is a readable and writable register containing the value of the input load dump rising threshold.

REGISTER 6-11: IVMLDR: INPUT LOAD DUMP RISING REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	
IVMLDR <9:2>								
bit 15							bit 8	
Legend:								

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-8 IVMLDR<9:2>: MSB of the input load dump rising threshold

R/W-1	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
IVMLDF	R <1:0>	—		—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-6 **IVMLDR<1:0>:** LSB of the of the input load dump threshold.

bit 5-0 Unimplemented: Read as '0'

EQUATION 6-6: IVMLDR FORMULA

$$IVMLDR < 9:0> = HEX\left(\frac{1024 \times Input \ load \ dump \ rising \ threshold}{40.96}\right)$$

6.6.12 IVMLDF REGISTER

Default value: 0xFA00

The IVMUVF register is a readable and writable register containing the value of the input load dump falling threshold.

REGISTER 6-12: IVMLDF: INPUT LOAD DUMP FALLING REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1	R/W-0
			IVMLD	F <9:2>			
bit 15							bit 8
l egend:							

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-8 IVMLDF<9:2>: MSB of the input load dump falling threshold

IVMLDF <1:0> — # # # # # # # # <t< th=""><th>J-0</th></t<>	J-0
bit 7	_
	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-6 IVMLDF<1:0>: LSB of the of the input load dump falling threshold

bit 5-0 Unimplemented: Read as '0'

EQUATION 6-7: IVMLDF FORMULA

$$IVMLDF < 9:0> = HEX\left(\frac{1024 \times Input \ load \ dump \ falling \ threshold}{40.96}\right)$$

6.6.13 OVMUV REGISTER

Default value: 0x0A0F

The OVMUV register is a readable and writable register containing the value of the output undervoltage hysteresis and falling thresholds.

REGISTER 6-13: OVMUV: OUTPUT UNDERVOLTAGE REGISTER

OVMUVHY <7:0>	Legend:)// –)//ritabla bi			mented hit read a	(0)	
OVMUVHY <7:0>	bit 15							bit 8
				OVMUVI	HY <7:0>			
R/W-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-1 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-8 **OVMUVHY<7:0>:** Under voltage detection threshold hysteresis

R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1
			OVMUV	′F <7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-0 **OVMUVF<7:0>:** Output undervoltage falling threshold.

EQUATION 6-8: OVMUVF FORMULA

$$OVMUVF <7:0> = HEX \left(\frac{VREF <11:0> - Output Undervoltage(V) \times 100}{4}\right)$$

Example:
For the default value of 0x0A0F, output undervoltage is VREF - 0.6V.
0.6V = DEC(0x0F) × 4 × 10 mV

EQUATION 6-9: OVMUVHY FORMULA

$$OVMUVHY < 7:0> = HEX \left(\frac{Output \ Undervoltage(V) - Output \ Undervoltage \ Clear(V)}{4} \times 100 \right)$$

Example:
For the default value of 0x0A0F, output undervoltage hysteresis is
0.4V = DEC(0x0A) × 4 × 10 mV

6.6.14 OVMOV REGISTER

The OVMOV register is a readable and writable register containing the value of the output overvoltage rising and hysteresis thresholds.

REGISTER 6-14: OVMOV: OUTPUT OVERVOLTAGE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0
			OVMO\	/HY <7:0>			
bit 15							bit 8
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	l as '0'			
u = Bit is uncha	= Bit is unchanged x = Bit is unknown		-n = Value at POR				
'1' = Bit is set		'0' = Bit is clea	ared				

bit 15-8 OVMOVHY<7:0>: Overvoltage detection threshold hysteresis

R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0
			OVMO	V <7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **OVMOV<7:0>:** Over voltage detection set (rising) threshold.

EQUATION 6-10: OVMOV FORMULA

$$OVMOVR <7:0> = HEX \left(\frac{Output \ Overvoltage(V) \times 100 - VREF <11:0>}{4} \right)$$

Example: For the default value of $0 \times AFE$, output overvoltage is 10.16V + VREF. $10.16V = DEC(0 \times FE) \times 4 \times 10 \text{ mV}$

EQUATION 6-11: OVMOVHY FORMULA

$$OVMOVHY < 7:0> = HEX \left(\frac{Output \ Overvoltage(V) - Output \ Overvoltage \ Clear(V)}{4} \times 100 \right)$$

Example:
For the default value of 0×AFE, output overvoltage hysteresis is
0.4V = DEC(0×0A) × 4 × 10 mV

Default value: 0x0AFE

6.6.15 OCROCR REGISTER

Default value: 0xBE00

The OCROCR register is a readable and writable register containing the value of the output overcurrent rising threshold.

REGISTER 6-15: OCROCR: OUTPUT OVERCURRENT RISING THRESHOLD REGISTER

R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0
			OCROC	CR <9:2>			
bit 15							bit 8
Logond:							

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-8 OCROCR<9:2>: MSB of the output overcurrent rising threshold

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
OCROC	:R <1:0>	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 OCROCR<1:0>: LSB of the of the output overcurrent rising threshold

bit 5-0 Unimplemented: Read as '0'

EQUATION 6-12: OCROCR FORMULA

$$OCROCR < 9:0> = HEX \left(I_{ocr}(mA) \times \frac{R_{shunt}}{100(\mu V)} \right)$$

Example:

 $0x2F8 = HEX(15200 \text{ mA} \times (5 \text{ m}\Omega/100 \mu\text{V}))$ Resulting OCROCR register will be 0x2F8 << 6 = 0xBE00 '1' = Bit is set

6.6.16 OCROCF REGISTER

Default value: 0xB900

The OCROCF register is a readable and writable register containing the value of the output overcurrent falling threshold.

REGISTER 6-16: OCROCF: OUTPUT OVERCURRENT FALLING THRESHOLD REGISTER

R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1
			OCRO	CF <9:2>			
bit 15							bit 8
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unknown		-n = Value at	POR		

bit 15-8 OCROCF<9:2>: MSB of the output overcurrent falling threshold

'0' = Bit is cleared

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
OCROC	CF <1:0>	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

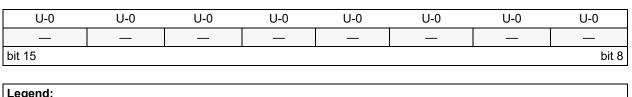
bit 7-6 OCROCF<1:0>: LSB of the of the output overcurrent falling threshold

bit 5-0 Unimplemented: Read as '0'

EQUATION 6-13: OCROCF FORMULA

$$OCROCF < 9:0> = HEX \left(I_{ocf} (mA) \times \frac{R_{shunt}}{100(\mu V)} \right)$$

Example:


0x2E4 = HEX(14800 mA × (5 mΩ/100 μV)) Resulting OCROCF register will be 0x2E4 << 6 = 0xB900

6.6.17 VSAFECMP REGISTER

Default value: 0x0000

The VSAFECMP register is a readable and writable register for configuring the output discharge behavior.

REGISTER 6-17: VSAFECMP: VSAFE CMP EN REGISTER

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-8 Unimplemented: Read as '0'.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	_	_	_	—	—	VSAFECMP
bit 7							bit 0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-1 Unimplemented: Read as '0'.

bit 0 VSAFECMP: Output discharge behavior

'0' = Output capacitors will be discharged for 600 ms, then discharge will stop

'1' = Output capacitors will be discharged down to VSAFE = 0.8V, then discharge will stop

6.6.18 VREF REGISTER

Default value: 0x1F43

The VREF register is a readable and writable register containing the value of the output voltage in 10 mV steps and the slope speed control bits.

REGISTER 6-18: VREF: OUTPUT VOLTAGE SETTING REGISTER

R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			VRE	F<11:4>			
bit 15							bit 8
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkno	wn	-n = Value at	POR		
'1' = Bit is set		'0' = Bit is cleare	ed				

bit 15-8 **VREF<11:4>:** MSB of the set output voltage in 10 mV resolution.

R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
VREF <3:0>					VRAM	P <3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

- bit 7-6 **VREF<3:0>:** LSB of the of the output set voltage in 10mV resolution
- bit 5-0 VRAMP<3:0>: Voltage ramp speed = number of PWM cycles to increase the output voltage by 10 mV

EQUATION 6-14: VREF FORMULA

$$VREF < 11:0 = HEX(V_{out} (V) \times 100)$$

Example:

For a value of 5V, HEX(5V × 100) = $0 \times 1F4$. Resulting VREF register will be $0 \times 1F4X$, where X is the voltage ramp.

6.6.19 IREF REGISTER

Default value: 0xBB80

The IREF register is a readable and writable register containing the value of the output current in 5 mA steps for a shunt of 5 m Ω or 25 μ V shunt voltage drop.

REGISTER 6-19: IREF: OUTPUT CURRENT SETTING REGISTER

R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1	R/W-1
IREF<11:4>							
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-8 **IREF<11:4>:** MSB of the set output current

R/W-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
IREF <3:0>				—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 IREF<3:0>: LSB of the of the output set current (see Equation 6-15)

bit 5-0 Unimplemented: Read as '0'

EQUATION 6-15: IREF FORMULA

$$IREF < 11:0 > = HEX \left(I_{out} (mA) \times \frac{R_{shunt} (m\Omega)}{25(\mu V)} \right)$$

Example:

For a value of 15A, HEX(15000 mA × $(5 \text{ m}\Omega/25 \mu\text{V})) = 0 \times \text{BB8}$. Resulting IREF register will be $0 \times \text{BB8} << 4 = 0 \times \text{BB80}$.

6.6.20 SWFRQCON1 REGISTER

Default value: 0x9200

The SWFRQCON1 is a readable and writable register used to program several parameters. This register can't be modified while the MCP19061 is enabled.

REGISTER 6-20: SWFRQCON1: CONTROL REGISTER

R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0
SWFRQON	DITHER	—			DT<4:0>		
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15	SWFRQON: Switching frequency enable bit
	 Switching is enabled All internal circuits are in reset state
bit 14	DITHER: Dither enable bit
	1 = Dithering is enabled
	0 = Dithering is disabled
bit 13	Unimplemented: Read as '0'
bit 12-8	DT<4:0>: Dead time in 3.5 ns steps

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
Reserved									
bit 7	bit 7 bit 0								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-0 Reserved for future use

6.6.21 SWFRQCON2 REGISTER

Default value: 0x004F

The SWFRQCON2 is a readable and writable register used to program the frequency and the phase of the switching. This register can't be modified while the MCP19061 is enabled.

REGISTER 6-21: SWFRQCON2: FREQUENCY AND PHASE CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PHASHIF <7:0>									
bit 15							bit 8		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-8 **PHASHIF <7:0>:** Phase shift value bits (see Equation 6-16)

R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1		
SWFRQPR <7:0>									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-0 SWFRQPR <7:0>: Switching period setting bits (see Equation 6-17)

EQUATION 6-16: PHASHIF FORMULA

$$PHASHIF < 7:0> = HEX\left(\frac{Phase \ shift}{360^{\circ}}\right) \times DEC(PLL_PR + 1)$$

EQUATION 6-17: SWFRQPR FORMULA

$$SWFRQPR < 7:0 > = HEX \left(\frac{Switching period}{TCLK (ns)} - 1 \right)$$

Where:

TCLK = the period of 36 MHz clock, 1/36 MHz = 27 ns

6.6.22 DITHER REGISTER

Default value: 0x003C.

The DITHER is a readable and writable register used to program the dithering and maximum duty cycle parameters. This register can't be modified while the MCP19061 is enabled.

REGISTER 6-22: DITHER: DITHERING CONTROL REGISTER

U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	DPS <2:0>			D	DITWAVE		
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15	Unimplement	t ed: Read as '	0'						
bit 14-12	DPS <2:0>: D 000 = 1 001 = 2 010 = 4	ithering posts	caler counter s	etting. The po	stscaler values	are:			
	011 = 8 100 = 16 101 = 32 110 = 64 111 = 128								
bit 11-9	DOWNSLOP described in E		lope/upslope r	atio, available	only when the l	DITHWAVE = 1	. The ratio is		
bit 8	DITWAVE: Dif	thering wave s	election bit:						
	 0 = Triangular dithering wave 1 = Pseudo sawtooth dithering wave 								
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
			MAXD	C <7:0>					

bit 7			bit 0
			
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	

bit 7-0 MAXDC<7:0>: Maximum on time of duty cycle, can be calculated as shown in Equation 6-19.

'0' = Bit is cleared

EQUATION 6-18: DOWNSLOP FORMULA

'1' = Bit is set

$$DOWNSLOP < 2:0> = HEX \left(\frac{down_slope}{up_slope} - 1\right)$$

EQUATION 6-19: MAXDC FORMULA

MAXDC <7:0> = *HEX*(*Duty ratio* × (*SWFRQPR* + 1) × *TCLK*(ns))

Where:

TCLK = the period of 36 MHz clock, 1/36 MHz = 27 ns

6.6.23 LC REGISTER

The LC register is a readable and writable register containing loop compensation LC parameter. This register cannot be modified while the MCP19061 is enabled.

Default value: 0x00A9.

Caution: Modifying this value affects the regulation loop stability!

REGISTER 6-23: LC

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	_	LC <11:8>			
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-12 Unimplemented: Read as '0'

bit 11-8 LC<11:8>: MSB of the LC loop compensation parameter

R/W-1	R/W-0	R/W-1	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1
			LC <	7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LC<7:0>: LSB of the of the LC loop compensation parameter

EQUATION 6-20: LC FORMULA

 $LC <11:0> = HEX(Inductor value(\mu H) \times 36)$

Example:

For an inductor value of 4.7 μ H, HEX(4.7 × 36) = 0xA9

.

6.6.24 IMSYS REGISTER

The IMSYS register is a readable and writable register containing the masks for the alert pin and the minimum alert interval set bits. A detected event will set the ALERT pin only if it is not masked. If two consecutive

REGISTER 6-24: IMSYS

non-masked events are detected, the second one will set the ALERT pin only after the programmed interval after the previous alert. This register can't be modified while the MCP19061 is enabled.

Default value: 0x0000.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
VDDIOUVM	ADCREFUVM	VDD50UVM	AVDD40UVM	LOSECLKSYSM	LOSECLKPLLM	LOSESYNCM	DISCHFAILM
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15	VDDIOUVM: VDDIO undervoltage mask bit:
	0 = ALERT will be set by the VDDIO undervoltage detection
	 1 = ALERT will not be set by the VDDIO undervoltage detection
bit 14	ADCREFUVM: ADC reference undervoltage mask bit
	0 = ALERT will be set by the ADC reference undervoltage detection
	1 = ALERT will not be set by the ADC reference undervoltage detection
bit 13	VDD50UVM: VDD undervoltage mask bit:
	0 = ALERT will be set by the VDD undervoltage detection
	 ALERT will not be set by the VDD undervoltage detection
bit 12	AVDD40UVM: Analog VDD undervoltage mask bit:
	0 = ALERT will be set by the analog VDD undervoltage detection
	 1 = ALERT will not be set by the analog VDD undervoltage detection
bit 11	LOSECLKSYSM: 1.8 MHz clock lost mask bit
	0 = ALERT will be set by the 1.8MHz clock lost detection
	 1 = ALERT will not be set by the 1.8MHz clock lost detection
bit 10	LOSECLKPLLM: 36 MHz clock lost mask bit
	0 = ALERT will be set by the 36MHz clock lost detection
	1 = ALERT will not be set by the 36MHz clock lost detection
bit 9	LOSESYNCM: External sync lost mask bit - only in sync mode
	0 = ALERT will be set by the lost sync detection
	1 = ALERT will not be set by the lost sync detection
bit 8	DISCHFAILM: Discharge failed mask bit
	0 = ALERT will be set by the failed discharge detection
	 ALERT will not be set by the failed discharge detection

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
UOLDM	—	—	—	—		ITRDLE <2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7	UOLDM: USB Overload Mask bit.
bit 6-3	Unimplemented: Read as '0'
bit 2-0	ITRDLE<2:0>: ALERT minimum interval bits. Set the minimum value between two alerts in PWM cycles:
	000 = 1
	001 = 2
	010 = 4
	011 = 8
	100 = 16
	101 = 32
	110 = 64
	111 = 128

6.6.25 IMBB REGISTER

The IMBB register is a readable and writable register containing the masks for the alert pin set bits. A detected event will set the ALERT pin only if it is not masked. This register cannot be modified while the MCP19061 is enabled.

REGISTER 6-25: IMBB: REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICMOCM	OCROCM	OCRREVCM	OCRSCM	VBSTUVM	OVTGDRM	OVTVDD50M	OVTAVDD40M
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15	ICMOCM: Input overcurrent mask bit
	0 = ALERT will be set by the input overcurrent detection
	1 = ALERT will not be set by the input overcurrent detection
bit 14	OCROCM: Output overcurrent mask bit
	0 = ALERT will be set by the output overcurrent detection1 = ALERT will not be set by the output overcurrent detection
bit 13	OCRREVCM: Output reverse current mask bit
	 0 = ALERT will be set by the output reverse current detection 1 = ALERT will not be set by the output reverse current detection

Default value: 0x0000.

REGISTER 6-25: IMBB: REGISTER (CONTINUED)

bit 12	 OCRSCM: Output short circuit mask bit 0 = ALERT will be set by the output short circuit detection 1 = ALERT will not be set by the output short circuit detection
bit 11	 VBSTUVM: Bootstrap supplies undervoltage mask bit 0 = ALERT will be set by the bootstrap supplies undervoltage detection 1 = ALERT will not be set by the bootstrap supplies undervoltage detection
bit 10	 OVTGDRM: Drivers overtemperature mask bit 0 = ALERT will be set by the drivers overtemperature detection 1 = ALERT will not be set by the drivers overtemperature detection
bit 9	 OVTVDD50M: VDD regulator overtemperature mask bit 0 = ALERT will be set by the VDD regulator overtemperature detection 1 = ALERT will not be set by the VDD regulator overtemperature detection
bit 8	 OVTAVDD40M: AVDD regulator overtemperature mask bit 0 = ALERT will be set by the AVDD regulator overtemperature detection 1 = ALERT will not be set by the AVDD regulator overtemperature detection

R/W-0	R/W-0						
IVMOVM	IVMUVM	IVMLDM	OVMOVM	OVMUVM	OVMZVM	PLLPRFM	CRCERRM
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7	IVMOVM: Input overvoltage mask bit
	0 = ALERT will be set by the input overvoltage detection
	1 = ALERT will not be set by the input overvoltage detection
bit 6	IVMUVM: Input undervoltage mask bit
	0 = ALERT will be set by the input undervoltage detection
	 ALERT will not be set by the input undervoltage detection
bit 5	IVMLDM: Input load dump mask bit
	0 = ALERT will be set by the input load dump detection
	1 = ALERT will not be set by the input load dump detection
bit 4	OVMOVM: Output overvoltage mask bit
	0 = ALERT will be set by the output overvoltage detection
	1 = ALERT will not be set by the output overvoltage detection
bit 3	OVMUVM: Output undervoltage mask bit
	0 = ALERT will be set by the output undervoltage detection
	1 = ALERT will not be set by the output undervoltage detection
bit 2	OVMZVM: Output vsafe0 mask bit
	0 = ALERT will be set by the output vsafe0 detection
	1 = ALERT will not be set by the output vsafe0 detection
bit 1	PLLPRFM: PLL PR counter fail mask bit
	0 = ALERT will be set by the PLL PR counter fail detection
	1 = ALERT will not be set by the PLL PR counter fail detection
bit 0	CRCERRM: NVM CRC check fail
	0 = ALERT will be set by the NVM CRC check fail detection
	1 = ALERT will not be set by the NVM CRC check fail detection

6.6.26 ADCON REGISTER

The ADCON register is a readable and writable register containing voltage conversion control bits. This register can't be modified while the MCP19061 is enabled.

REGISTER 6-26: ADCON: VOLTAGES CONVERSION CONTROL REGISTER

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			ADCMAN	NDLY <7:0>			
bit 15							bit 8
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n = Value at	POR		
'1' = Bit is set		'0' = Bit is clea	ared				

Default value: 0x3700.

bit 15-18

ADCMANDLY <7:0>: Output voltage errors detection latency bits

000 = 1 conversion 001 = 2 conversions 010 = 4 conversions 011 = 8 conversions 100 = 16 conversions 101 = 32 conversions 110 = Reserved 111 = Reserved

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	—	OCRADCON	OCMADCON	OVMADCON	IVMADCON
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	OCRADCON: Output current reporter ADC control bit
	0 = Output current reporter ADC disabled1 = Output current reporter ADC enabled
bit 2	OCMADCON: Output current monitor ADC control bit
	0 = Output current monitor ADC disabled1 = Output current monitor ADC enabled
bit 1	OVMADCON: Output voltage monitor ADC control bit
	0 = Output voltage monitor ADC disabled1 = Output voltage monitor ADC enabled
bit 0	IVMADCON: Input voltage monitor ADC control bit
	0 = Input voltage monitor ADC disabled
	1 = Input voltage monitor ADC enabled

6.6.27 USBOLD REGISTER

The USBOLD register is a readable and writable register containing overload setting bits.

USBOLD register can be calculated as follows:

 For 1A overload condition, USBOLD = CA0Ah = 11 0010100 0001010 b, with factor = 20 multiplied by base = 50 mA. For 3A overload condition, USBOLD = DE0Ah = 11 0111100 0001010 b, with factor = 60 multiplied by base = 50 mA

Default value: 0x0000

REGISTER 6-27: USBOLD: OVERLOAD CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
USB_CLA	SS <1:0>			USB_FAC	CTOR <6:1>		
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-14	USB_CLASS <1:0>: USB PD overload class set bits
	0.0 = class 0 (no overload)

- 00 = class 0 (no overload) 01 = class 1
- 10 = class 110 = class 2
- 11 = class 3

bit 13-8 USB_FACTOR <6:1>: Set current in USB_BASE steps; most significant bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
USB_FACTOR <0>			U	SB_BASE <6	:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7	USB_FACTOR <0>: Set current in USB_BASE steps; least significant bit
bit 6-0	USB_BASE <6:0>: Set USB overload current resolution in 25 µV output shunt voltage steps

6.6.28 IVMCNT REGISTER

The IVMCNT register is a readable and writable register containing the input voltage errors persistence control bits. This register can't be modified while the MCP19061 is enabled.

REGISTER 6-28: IVMCNT: INPUT VOLTAGE ERROR PERSISTENCE REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
IVMUVCNT <2:0>			—	_	IV	MLDCNT <2:0	>
bit 15							bit 8

Default value: 0x0000

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-13 IVMUVCNT <2:0>: Input undervoltage error detection latency bits

	000 = 1 conv 001 = 2 conv 010 = 4 conv 011 = 8 conv 100 = 16 con 101 = 32 con 110 = reserve 111 = reserve	ersions ersions ersions versions versions ed								
bit 12-11	Unimplemen	Unimplemented: Read as '0'								
bit 10-8	000 = 1 conv 001 = 2 conv 010 = 4 conv 011 = 8 conv 100 = 16 con 101 = 32 conv	IVMLDCNT <2:0>: Load dump error detection latency bits 000 = 1 conversion 001 = 2 conversions 010 = 4 conversions 011 = 8 conversions 100 = 16 conversions 101 = 32 conversions 110 = reserved								
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	VMOVCNT <2:0)>		_	_					
bit 7							bit 0			
Legend: R = Readable '1' = Bit is set		W = Writable '0' = Bit is clea		U = Unimple -n = Value at	mented bit, read	1 as '0'				
bit 7-5	IVMOVCNT < 000 = 1 conv 001 = 2 conv 010 = 4 conv 011 = 8 conv 100 = 16 con 101 = 32 con 110 = reserve 111 = reserve	ersions ersions ersions versions versions ed	ervoltage erro	r detection per	rsistence bits					

bit 4-0 Unimplemented: Read as '0'

6.6.29 OVMVCNT1 REGISTER

Default value: 0x0000

The OVMVCNT1 register is a readable and writable register containing the output under / overvoltage detection latency counter setting bits. This register can't be modified while the MCP19061 is enabled.

REGISTER 6-29: OVMVCNT1: OUTPUT VOLTAGE ERROR PERSISTENCE REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
0\	/MUVCNT <2:0)>	—	—	—	—	—
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-13 **OVMUVCNT <2:0>:** Output undervoltage error detection persistence bits

- 000 = 1 conversion
- 001 = 2 conversions
- 010 = 4 conversions
- 011 = 8 conversions
- 100 = 16 conversions
- 101 = 32 conversions
- 110 = reserved
- 111 = reserved

bit 12-8 Unimplemented: Read as '0'

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
OVMOVCNT <2:0>			—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-5

- **OVMOVCNT <2:0>:** Output overvoltage error detection persistence bits
- 000 = 1 conversion
- 001 = 2 conversions 010 = 4 conversions
- 010 = 4 conversion
- 011 = 8 conversions 100 = 16 conversions
- 100 = 10 conversions 101 = 32 conversions
- 110 = reserved
- 111 = reserved
- bit 4-0 Unimplemented: Read as '0'

6.6.30 OVMVCNT2 REGISTER

The OVMVCNT2 register is a readable and writable register containing output voltage detection persistence counters setting bits. This register can't be modified while the MCP19061 is enabled.

REGISTER 6-30: OVMVCNT2: OUTPUT VOLTAGE PERSISTENCE REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
0	VM2VCNT <2:0)>	—	—	—	—	—
bit 15							bit 8

Default value: 0x0000

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-13 **OVM2VCNT <2:0>:** Output 2V short circuit threshold detection persistence bits

		D /11/0	
Unir	nplement	ed: Read a	as '0'
111	= reserved	d	
110	= reserved	d	
101	= 32 conv	ersions	
100	= 16 conv	ersions	
011	= 8 conve	rsions	
010	= 4 conve	rsions	
001	= 2 conve	rsions	
000	= 1 conve	rsion	

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
OVMSFCNT <2:0>		—	—	—	—	—	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5

bit 12-8

OVMSFCNT <2:0>: Output vsafe0 detection persistence bits

- 000 = 1 conversion 001 = 2 conversions 010 = 4 conversions 011 = 8 conversions 100 = 16 conversions 101 = 32 conversions
- 110 = reserved
- 111 = reserved
- bit 4-0 Unimplemented: Read as '0'

6.6.31 CCNT REGISTER

Default value: 0x1007

The CCNT register is a readable and writable register containing current errors detection set bits. This register cannot be modified while the MCP19061 is enabled.

REGISTER 6-31: CCNT: CURRENT ERRORS REGISTER

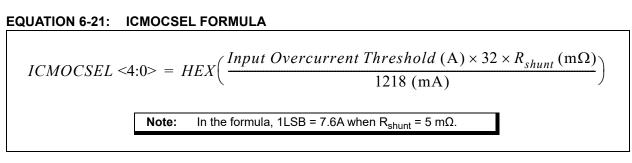
R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ICMOCCNT <2:0>			I	CMOCSEL <4:0)>		
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n = Value at POR

bit 15-13 IC

- **ICMOCCNT <2:0>:** Input overcurrent detection persistence bits 000 = 1 conversion
- 001 = 2 conversions
- 010 = 4 conversions
- 011 = 8 conversions
- 100 = 16 conversions
- 101 = 32 conversions
- 110 = reserved
- 111 = reserved
- bit 12-8 **ICMOCSEL <4:0>:** Input overcurrent detection threshold bits. Current detection threshold is calculated as shown in Equation 6-21.

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-1	R/W-1	R/W-0
OCROCCNT <2:0>		—	—	OCF	RREVCCNT <2	2:0>	
bit 7							bit 0


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n = Value at POR

bit 7-5 OCROCCNT <2:0>: Output overcurrent detection persistence bits

- 000 = 1 conversion
- 001 = 2 conversions
- 010 = 4 conversions
- 011 = 8 conversions
- 100 = 16 conversions
- 101 = 32 conversions
- 110 = reserved
- 111 = reserved
- bit 4-3 Unimplemented: Read as '0'

bit 2-0 OCRREVCCNT <2:0>: Output reverse current detection persistence bits

- 000 = 1 conversion
- 001 = 2 conversions
- 010 = 4 conversions
- 011 = 8 conversions
- 100 = 16 conversions
- 101 = 32 conversions
- 110 = reserved
- 111 = reserved

6.6.32 COMPMODE REGISTER

Default value: 0x0307

The COMPMODE register is a readable and writable register containing several driver setting bits. This register can't be modified while the MCP19061 is enabled.

REGISTER 6-32: COMPMODE: DRIVING REGISTER

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1
HIDIS	LODIS	—	—		—	Rese	erved
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15	 HIDIS: High side drivers disable bit 0 = High side drivers are enabled 1 = High side drivers are disabled (high impedance)
bit 14	LODIS: Low side drivers disable bit 0 = Low side drivers are enabled 1 = Low side drivers are disabled (high impedance)
bit 13-10	Unimplemented: Read as '0'
bit 9-8	Reserved: Read as '1'; Do not clear these bits!

U-0	U-0	U-0	U-0	U-0	R/W-1	R-1	R/W-1
—	_	—	—	—	Reserved	VREGEN	IREGEN
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
'1' = Bit is set	'0' = Bit is cleared	-n = Value at POR	

bit 7-3	Unimplemented: Read as '0'
bit 2	RESERVED: Read as '1'; Do not clear this bit!
bit 1	VREGEN: Voltage regulation bit 1 = Read as '1'; Voltage regulation is always enabled
bit 0	IREGEN: Current regulation enable bit 0 = Current regulation is disabled 1 = Current regulation is enabled

6.6.33 EVSTOP REGISTER

Default value: 0x0000

The EVSTOP register is a readable and writable register containing the bits defining what events will stop the power train. This register can't be modified while the MCP19061 is enabled.

REGISTER 6-33: EVSTOP: EVENT STOP REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	_	_	—	—	ORCST
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n = Value at POR

bit 15-9 Unimplemented: Read as '0'

bit 8

ORCST: Output reverse current stop enable bit

0 = Reverse current event will not stop the power train

1 = Reverse current event will stop the power train

R/W-0	R/W-0						
IOVST	IUVST	OOVST	OUVST	IOCST	OOCST	OSHCST	UOLDST
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
'1' = Bit is set	'0' = Bit is cleared	-n = Value at POR

bit 7	 IOVST: Input overvoltage stop enable bit 0 = Input overvoltage event will not stop the power train 1 = input overvoltage event will stop the power train
bit 6	 IUVST: Input undervoltage stop enable bit 0 = Input undervoltage event will not stop the power train 1 = Input undervoltage event will stop the power train
bit 5	 OOVST: Output overvoltage stop enable bit 0 = Output overvoltage event will not stop the power train 1 = Output overvoltage event will stop the power train
bit 4	 OUVST: Output undervoltage stop enable bit 0 = Output undervoltage event will not stop the power train 1 = Output undervoltage event will stop the power train
bit 3	 IOCST: Input overcurreent stop enable bit 0 = Input overcurrent event will not stop the power train 1 = Input overcurrent event will stop the power train
bit 2	 OOCST: Output overcurrent stop enable bit 0 = Output overcurrent event will not stop the power train 1 = Output overcurrent event will stop the power train
bit 1	 OSHCST: Output short-circuit stop enable bit 0 = Output short-circuit event will not stop the power train 1 = Output short-circuit event will stop the power train
bit 0	 UOLDST: Overload stop enable bit 0 = Overload event will not stop the power train 1 = Overload event will stop the power train

6.6.34 MODECON REGISTER

Default value: 0x0101

The MODECON register is a readable and writable register containing several configuration bits.

REGISTER 6-34: MODECON: MODE SET REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	MANUDSCH	AUTODSCH
bit 15							bit 8
Logond.							

R = Readable bit W = Writable bit U = Unimplemented bit, read as	0'
u = Bit is unchanged x = Bit is unknown -n = Value at POR	
'1' = Bit is set '0' = Bit is cleared	

bit 15-10 Unimplemented: Read as '0'

bit 9 **MANUDSCH:** Manual discharge bit. Set high to start a discharge cycle. The bit will automatically reset when the discharge is finished. It is available only if AUTODSCH bit = 0.

bit 8 AUTODSCH: Automatic discharge bit

- 0 = Stopping the power train will not initiate an output capacitor discharge
- 1 = Stopping the power train will initiate an output capacitor discharge

U-0	U-0	U-0	U-0	U-0	U-0	R-0	R/W-0
—	—	—		—	—	DOPM <1:0>	
bit 7					bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		
'1' = Bit is set	'0' = Bit is cleared		

bit 7-2	Unimplemented: Read as '0'
---------	----------------------------

- 00 = Discharge Fault mode (read only)
 - 01 = Standby mode
- 10 = Normal mode
 - 11 = Discharge mode (read only)

Note: If the ENABLE pin is set to high, DOPM bits will read 02 (Normal mode) and writing 01 will have no effect.

6.6.35 PLLCON REGISTER

The PLLCON register is a readable and writable register containing switching clock configuration. This register can't be modified while the MCP19061 is enabled or any time dependent function is activated.

To modify it, the SYNC pin shall not be configured as output and the ADC reading in disable state must be deactivated.

Default value: 0x014F.

REGISTER 6-35: PLLCON: PLL CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1
—	—	—	_	_	AUTORVB	CLKOUTEN	CLKSRC
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-11	Unimplemen	ted: Read as '	0'					
bit 10	AUTORVB: Clock auto-revert bit 0 = The device will not revert to internal clock if synchronization is lost 1 = The device will revert to internal clock if synchronization is lost							
bit 9	 CLKOUTEN: Clock output enable bit. 0 = The SYNC pin is disabled 1 = The switching frequency is output on the SYNC pin. Available only if CLKSRC = 1. 							
bit 8	 The switching frequency is output on the SYNC pin. Available only if CLKSRC = 1. CLKSRC: PLL input selection pin. 0 = The PLL input is the SYNC pin 1 = The PLL input is the internal 450KHz 							
R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	

R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1
			PLLPF	R <7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-0 PLLPR <7:0>: Switching period counter.

6.6.36 DEVID REGISTER

The DEVID register is a readable and writable register containing the device I^2C settings. This register can't be modified while the MCP19061 is enabled.

REGISTER 6-36: DEVID: I2C ADDRESS SETTING REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—	—	—	—		-	ADR0EN	
bit 15							bit 8	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkn	own	-n = Value at	POR			
'1' = Bit is set		'0' = Bit is clea	ared					

bit 15-9 Unimplemented: Read as '0'

bit 8

ADR0EN: I2C address selection pin.

'0' = The I2C address is set internally using DEVID<4:0>.

'1' = The I2C address is set via the ADR0 pin

U-0	R-1	R-0	R-1	R/W-0	R/W-0	R/W-0	R/W-0
—	1	0	1	DEVID <3:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as	'0'
------------------------------	-----

bit 6 Read only: Read as '1'

bit 5 Read only: Read as '0'

bit 4 Read only: Read as '1'

bit 3-0 **DEVID <3:0>:** Together with the previous two bits, this will be the I2C address of the chip.

TABLE 6-2:I²C ADDRESS RESISTOR SELECTION

R address (k Ω) MIN	R address (k Ω) MAX	DEVID <3:0> 4LSB (hex)	I2C Addr (hex)	
0	2.56	0	50	
2.56	5.12	1	51	
5.12	7.68	2	52	
7.68	10.24	3	53	
10.24	12.8	4	54	
12.8	15.36	5	55	
15.36	17.92	6	56	
17.92	20.48	7	57	
20.48	23.04	8	58	
23.04	25.6	9	59	
25.6	28.16	A	5A	
28.16	30.72	В	5B	

Default value: 0x0151

TABLE 6-2: I ² C ADDRESS RESISTOR SELECTION (CONTINUE
--

30.72	33.28	С	5C
33.28	35.84	D	5D
35.84	38.4	E	5E
38.4	40.96	F	5F

6.6.37 GPRA REGISTER

Default value: 0x0000

The GPRA register is a readable and writable register. The user may store the desired information in this register. The GPRA register content is not saved in the NVM.

REGISTER 6-37: GPRA: USER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GPRA <15:8>							
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-8 GPRA <15:8>: General purpose user register A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
GPRA <7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 GPRA <7:0>: General purpose user register A

6.6.38 GPRB REGISTER

The GPRB register is a readable and writable register. The user may store the desired information in this register. The GPRB register content is not saved in the NVM.

REGISTER 6-38: GPRB: USER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GPRB <15:8>							
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-8 GPRB <15:8>: General purpose user register B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
GPRB <7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 GPRB <7:0>: General purpose user register B

6.6.39 GPRC REGISTER

Default value: 0x0000

Default value: 0x0000

The GPRC register is a readable and writable register. The user may store the desired information in this register. The GPRC register content is not saved in the NVM.

REGISTER 6-39: GPRC: USER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
GPRC <15:8>								
bit 15							bit 8	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-8 GPRC <15:8>: General purpose user register C

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
GPRC <7:0>								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-0 GPRC <7:0>: General purpose user register C

6.6.40 GPRD REGISTER

Default value: 0x0000

The GPRD register is a readable and writable register. The user may store the desired information in this register. The GPRD register content is not saved in the NVM.

REGISTER 6-40: GPRD: USER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	GPRD <15:8>								
bit 15							bit 8		
Legend:									
R = Readable	le bit W = Writable bit			U = Unimplen					
u = Bit is uncha	anged	x = Bit is unkn	own	-n = Value at	POR				
'1' = Bit is set		'0' = Bit is clea	red						

bit 15-8 **GPRD <15:8>:** General purpose user register D

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GPRD <7:0>							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-0 **GPRD <7:0>:** General purpose user register D

6.6.41 STASYS REGISTER

The STASYS register is a readable and deletable register containing the system status bits. The status bits are set by the event detect state machine and can be cleared by the user. To clear a status bit, the user must write "1" in it's location.

REGISTER 6-41: STASYS: SYSTEM STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
VDDIOUV	ADCREFUV	VDD50UV	AVDD40UV	LOSECLKSYS	LOSECLKPLL	LOSESYNC	DISCHFAIL
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15	VDDIOUV: VDD_IO undervoltage bit 0 = No VDD_IO undervoltage was detected 1 = VDD_IO undervoltage was detected
bit 14	ADCREFUV: AD reference undervoltage bit 0 = No AD reference undervoltage was detected 1 = AD reference undervoltage was detected
bit 13	 VDD50UV: VDD 5V undervoltage bit 0 = No 5V VDD undervoltage was detected 1 = 5V VDD undervoltage was detected
bit 12	AVDD40UV: Analog 4V supply undervoltage bit 0 = No analog 4V supply undervoltage was detected 1 = Analog 4V supply undervoltage was detected
bit 11	LOSECLKSYS: System clock fail bit 0 = No clock lost was detected 1 = System clock lost was detected
bit 10	LOSECLKPLL: PLL fail bit 0 = No PLL clock lost was detected 1 = PLL lost clock was detected
bit 9	LOSESYNC: Synchronization lost bit 0 = No synchronization lost was detected 1 = Synchronization lost was detected
bit 8	 DISCHFAIL: Output discharge failed bit 0 = No output discharge fail was detected 1 = Output discharge fail was detected

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0
UOLD	—		SUFAIL	ACDONE	SUDONE	_	_
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpler			
u = Bit is unchanged x = Bit is unknow		nown	-n = Value at	POR			
'1' = Bit is se	et	'0' = Bit is cle	ared				
bit 7	it 7 UOLD: USB overload detected bit						
		overload was					
	1 = USB over	erload was dete	ected				

bit 6-5	Unimplemented: Read as '0'
bit 4	SUFAIL: Startup fail bit 0 = Startup succeeded 1 = Startup was not properly completed
bit 3	ACDONE: AD conversion done bit 0 = The AD conversion is in process 1 = The AD conversion is completed
bit 2	SUDONE: Startup completed bit 0 = Startup not completed

1 = Startup completed

bit 1-0 Unimplemented: Read as '0'

6.6.42 STABB REGISTER

The STABB register is a readable and deletable register containing buck-boost related status bits. The status bits are set by the event detect state machine and can be cleared by the user. To clear a status bit, the user must write "1" to that location.

REGISTER 6-42: STABB: BUCK-BOOST STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ICMOC	OCROC	OCRREVC	OCRSC	VBSTUV	OVTGDR	OVTVDD50	OVTAVDD40
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15	ICMOC: Input overcurrent detected bit 0 = No input overcurrent was detected 1 = Input overcurrent was detected
bit 14	 OCROC: Output overcurrent detected bit 0 = No output overcurrent was detected 1 = Output overcurrent was detected
bit 13	 OCRREVC: Output reverse current detected bit 0 = No output reverse current was detected 1 = Output reverse current was detected

REGISTER 6-42: STABB: BUCK-BOOST STATUS REGISTER (CONTINUED)

bit 12	 OCRSC: Output short circuit detected bit 0 = No output short circuit was detected 1 = Output short circuit was detected
bit 11	 VBSTUV: Bootstrap supplies undervoltage detected bit 0 = No bootstrap supplies undervoltage was detected 1 = Bootstrap supplies undervoltage was detected
bit 10	 OVTGDR: Gate drivers overtemperature detect bit 0 = No gate drivers overtemperature was detected 1 = Gate drivers overtemperature was detected
bit 9	OVTVDD50: VDD regulator overtemperature detect bit 0 = No 5V VDD regulator overtemperature was detected 1 = 5V VDD regulator overtemperature was detected
bit 8	OVTAVDD40: Analog VDD regulator overtemperature detect bit 0 = No 4V analog VDD regulator overtemperature was detected 1 = 4V analog VDD regulator overtemperature was detected

R/W-0	R/W-0						
IVMOV	IVMUV	IVMLD	OVMOV	OVMUV	OVMZV	PLLPRF	CRCERR
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7	 IVMOV: Input overvoltage detected bit 0 = No input overvoltage was detected 1 = Input overvoltage was detected
bit 6	 IVMUV: Input undervoltage detected bit 0 = No input undervoltage was detected 1 = Input undervoltage was detected
bit 5	 IVMLD: Input load dump detected bit 0 = No input load dump was detected 1 = Input load dump was detected
bit 4	 OVMOV: Output overvoltage detected bit 0 = No output overvoltage was detected 1 = Output overvoltage was detected
bit 3	 OVMUV: Output undervoltage detected bit 0 = No output undervoltage was detected 1 = Output undervoltage was detected
bit 2	 OVMZV: Output vsafe0 detected bit 0 = No output vsafe0 was detected 1 = Output vsafe0 was detected
bit 1	 PLLPRF: PLL PR register changed bit 0 = No attempt to modify the PLL PR register while running detected 1 = PLL PR register was modified while running
bit 0	CRCERR: NVM CRC error bit 0 = No NVM CRC error was detected 1 = NVM CRC is wrong

6.6.43 NVMSTAT REGISTER

The NVMSTAT register is a readable and deletable register containing the NVM status bits. The status bits are set by the event detect state machine and can be cleared by the user. To clear a status bit, the user must write "1" to that location.

REGISTER 6-43: NVMSTAT: NVM STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-8 Unimplemented: Read as '0'

U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	NVMFAIL	BUSY	CRCCALOK	CRCCALF	CRCCONFOK	CRCCONFF
bit 7							bit 0

Legend:

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5	NVMFAIL: NVM fail bit 0 = NVM OK 1 = NVM is faulty
bit 4	BUSY: Device busy bit 0 = NVM can be accessed 1 = NVM is busy
bit 3	CRCCALOK: Calibration registers CRC good bit 0 = Calibration CRC is wrong 1 = Calibration CRC is correct
bit 2	CRCCALF: Calibration registers CRC failed bit 0 = Calibration CRC is correct 1 = Calibration CRC is wrong
bit 1	CRCCONFOK: Configuration registers CRC good bit 0 = Configuration CRC is wrong 1 = Configuration CRC is correct
bit 0	CRCCONFF: Configuration registers CRC failed bit 0 = Configuration CRC is correct 1 = Configuration CRC is wrong

6.6.44 RFLAG REGISTER

The RFLAG register is a readable and deletable register containing regulation mode status bits.

REGISTER 6-44: RFLAG: REGULATION STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	_	_
bit 15							bit 8
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-8 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	R-x	R-x
—	—		-	—		VRFLAG	IRFLAG
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-2	Unimplemented: Read as '0'
---------	----------------------------

bit 1	VRFLAG: Voltage regulation bit
-------	--------------------------------

0 = The device is not regulating the voltage

- 1 = Voltage regulation loop is closed
- bit 0 IRFLAG: Current regulation bit
 - 0 = The device is not regulating the current
 - 1 = Current regulation loop is closed

6.6.45 IVMOUT REGISTER

The IVMOUT register is a readable register containing voltage error comparator bits.

REGISTER 6-45: IVMOUT: VOLTAGE COMPARATORS REGISTER

U-0	U-0	R-x	U-0	R-x	R-x	U-0	U-0
—	_	SIVMLD	_	MIVMLDR	MIVMLDF	—	—
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-14	Unimplemented: Read as '0'
bit 13	SIVMLD: Load dump not latched detected bit 0 = Not latched load dump event not detected 1 = Not latched load dump event detected
bit 12	Unimplemented: Read as '0'
bit 11	 MIVMLDR: Mirrored load dump rising threshold bit Input corrected measured voltage is below the load dump rising detection threshold Input corrected measured voltage is above the load dump rising detection threshold
bit 10	 MIVMLDF: Mirrored load dump falling threshold bit Input corrected measured voltage is above the load dump falling detection threshold Input corrected measured voltage is below the load dump falling detection threshold
bit 9-8	Unimplemented: Read as '0'

U-0	U-0	R-x	R-x	R-x	R-x	R-x	R-x
—	—	SIVMOV	SIVMUV	MIVMOVR	MIVMOVF	MIVMUVR	MIVMUVF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-6	Unimplemented: Read as '0'
bit 5	SIVMOV: Input overvoltage not latched detected bit 0 = Not latched input overvoltage event not detected 1 = Not latched input overvoltage event detected
bit 4	SIVMUV: Input undervoltage not latched detected bit 0 = Not latched input undervoltage event not detected 1 = Not latched input undervoltage event detected
bit 3	 MIVMOVR: Mirrored input overvoltage rising threshold bit Input corrected measured voltage is below the input overvoltage rising detection threshold Input corrected measured voltage is above the input overvoltage rising detection threshold
bit 2	 MIVMOVF: Mirrored input overvoltage falling threshold bit Input corrected measured voltage is above the input overvoltage falling detection threshold Input corrected measured voltage is below the input overvoltage falling detection threshold

IVMOUT: Voltage comparators register (Continued)

bit 1	 MIVMUVR: Mirrored input undervoltage rising threshold bit Input corrected measured voltage is below the input undervoltage rising detection threshold Input corrected measured voltage is above the input undervoltage rising detection threshold
bit 0	 MIVMUVF: Mirrored input undervoltage falling threshold bit Input corrected measured voltage is above the input undervoltage falling detection threshold Input corrected measured voltage is below the input undervoltage falling detection threshold

6.6.46 OOUT1 REGISTER

The OOUT1 register is a readable register containing the output voltage and current comparators bits.

REGISTER 6-46: OOUT1: OUTPUT VOLTAGE AND CURRENT COMPARATORS REGISTER

U-0	U-0	R-x	R-x	R-x	R-x	U-0	U-0
_	—	SOCROC	SOCRREVC	MOCROCR	MOCROCF	_	—
bit 15							bit 8

Legend:							
R = Readal	ble bit	W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is ur	nchanged	x = Bit is unknowr	ı	-n = Value at F	POR		
'1' = Bit is s	set	'0' = Bit is cleared					
bit 15-14	Unimplem	nented: Read as '0'					
bit 13	0 = Not la	: Output overcurrent atched output overc atched output overc	urrent event no	ot detected			
bit 12	SOCRREN 0 = Not la	SOCRREVC: Output reverse current not latched detected bit 0 = Not latched output reverse current event not detected					
bit 11	 MOCROCR: Mirrored output overcurrent rising threshold bit 0 = Output corrected measured current is below the output overcurrent rising detection threshold 1 = Output corrected measured current is above the output overcurrent rising detection threshold 						
bit 10	 MOCROCF: Mirrored output overcurrent falling threshold bit 0 = Output corrected measured current is above the output overcurrent falling detection threshold 1 = Output corrected measured current is below the output overcurrent falling detection threshold 						
bit 9-8	Unimplemented: Read as '0'						
U-0	U-0	R-x	R-x	R-x	R-x	R-x	R-x
_		SOVMOV	SOVMUV	MOVMOVR	MOVMOVF	MOVMUVR	MOVMUVF
bit 7							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-6 Unimplemented: Read as '0'

SOVMOV: Output overvoltage not latched detected bit

0 = Not latched output overvoltage event not detected

1 = Not latched output overvoltage event detected

bit 5

OOUT1: Output voltage and current comparators register (Continued)

bit 4	SOVMUV: Output undervoltage not latched detected bit 0 = Not latched output undervoltage event not detected 1 = Not latched output undervoltage event detected
bit 3	 MOVMOVR: Mirrored output overvoltage rising threshold bit 0 = Output corrected measured voltage is below the output overvoltage rising detection threshold 1 = Output corrected measured voltage is above the output overvoltage rising detection threshold
bit 2	 MOVMOVF: Mirrored output overvoltage falling threshold bit 0 = Output corrected measured voltage is above the output overvoltage falling detection threshold 1 = Output corrected measured voltage is below the output overvoltage falling detection threshold
bit 1	 MOVMUVR: Mirrored output undervoltage rising threshold bit 0 = Output corrected measured voltage is below the output undervoltage rising detection threshold 1 = Output corrected measured voltage is above the output undervoltage rising detection threshold
bit 0	 MOVMUVF: Mirrored output undervoltage falling threshold bit 0 = Output corrected measured voltage is above the output undervoltage falling detection threshold 1 = Output corrected measured voltage is below the output undervoltage falling detection threshold

6.6.47 OOUT2 REGISTER

The OOUT2 register is a readable register containing several output voltage level comparators bits.

REGISTER 6-47: OOUT2: OUTPUT VOLTAGE COMPARATORS REGISTER

U-0	U-0	R-x	U-0	U-0	U-0	R-x	R-x
—	—	SOVM2V	—	-	—	MOVM2VR	MOVM2VF
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-14	Unimplemented: Read as '0'
bit 13	 SOVM2V: Output under 2V not latched detected bit 0 = Not latched output voltage below 2V event not detected 1 = Not latched output voltage below 2V event detected
bit 12-10	Unimplemented: Read as '0'
bit 9	 MOVM2VR: Mirrored output voltage below 2V rising threshold bit 0 = Output corrected measured voltage is above the 2V rising detection threshold 1 = Output corrected measured voltage is below the 2V rising detection threshold
bit 8	 MOVM2VF: Mirrored output voltage below 2V falling threshold bit 0 = Output corrected measured voltage is above the 2V falling detection threshold 1 = Output corrected measured voltage is below the 2V falling detection threshold

U-0	U-0	R-x	U-0	U-0	U-0	R-x	R-x
—	—	SOVMSF		—	—	MOVMSFR	MOVMSFF
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				

		0 – Onimplemented bit, read as 0
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 bit 5	Unimplemented: Read as '0' SOVMSF: Output vsafe0 not latched detected bit 0 = Not latched output vsafe0 event not detected 1 = Not latched output vsafe0 event detected
bit 4-2	Unimplemented: Read as '0'
bit 1	 MOVMSFR: Mirrored output voltage below vsafe0 rising threshold bit 0 = Output corrected measured voltage is below the vsafe0 rising detection threshold 1 = Output corrected measured voltage is above the vsafe0 rising detection threshold
bit 0	 MOVMSFF: Mirrored output voltage below vsafe0 falling threshold bit 0 = Output corrected measured voltage is above the vsafe0 falling detection threshold 1 = Output corrected measured voltage is below the vsafe0 falling detection threshold

6.6.48 OVTSTAT REGISTER

The OVTSTAT register is a readable register containing the status of the overtemperature shutdown flags. These flags are set by the overtemperature detection and are reset by setting the corresponding bit to '1' in the STABB Register 6-42.

REGISTER 6-48: OVTSTAT: OVERTEMPERATURE SHUTDOWN STATUS REGISTER

- -	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit	_	—	—	—	—	—	—	—
	bit 15							bit 8

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 15-8 Unimplemented: Read as '0'

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	_	OVTSDGD	R <1:0>	OVTSDVDD	OVTSDAVDD	OVTSDDVDD
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n = Value at POR'1' = Bit is set'0' = Bit is cleared

bit 4	OVTSDGD_BST: Boost leg gate driver overtemperature shutdown status
-------	--

bit 3	OVTSDGD_BCK: Buck leg gate driver overtemperature shutdown status

- bit 2 OVTSDVDD: VDD50 regulator overtemperature shutdown status
- bit 1 OVTSDAVDD: AVDD40 regulator overtemperature shutdown status
- bit 0 OVTSDDVDD: DVDD18 regulator overtemperature shutdown status

6.6.49 IVMCORRES REGISTER

The IVMCORRES register is a readable register containing corrected input voltage measured value.

REGISTER 6-49: IVMCORRES: CORRECTED INPUT VOLTAGE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
IVMCORRES <11:4>							
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-8 IVMCORRES <11:4>: Most significant bits of the corrected input voltage

R-x	R-x	R-x	R-x	U-0	U-0	U-0	U-0
IVMCORRES <3:0>			—	—	—	—	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-4	IVMCORRES <3:0>: Least significant bits of the corrected input voltage
---------	--

bit 3-0 Unimplemented: Read as '0'

EQUATION 6-22: VIN FORMULA

$$V_{in}(\mathbf{V}) = \frac{DEC(IVMCORRES < 11:0>)}{100}$$

© 2024 Microchip Technology Inc. and its subsidiaries

6.6.50 OVMCORRES REGISTER

The OVMCORRES register is a readable register containing corrected output voltage measured value.

REGISTER 6-50: OVMCORRES: CORRECTED OUTPUT VOLTAGE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			OVMCORF	RES <11:4>			
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 15-8 **OVMCORRES <11:4>:** Most significant bits of the corrected output voltage

R-x	R-x	R-x	R-x	U-0	U-0	U-0	U-0
OVMCORRES <3:0>				—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **OVMCORRES <3:0>:** Least significant bits of the corrected output voltage

bit 3-0 Unimplemented: Read as '0'

EQUATION 6-23: V_{OUT} FORMULA

$$V_{out}$$
 (V) = $\frac{DEC(OVMCORRES < 11:0>)}{100}$

6.6.51 OCRCORRES REGISTER

The OCRCORRES register is a readable register containing the corrected value of output current.

REGISTER 6-51: OCRCORRES: CORRECTED OUTPUT CURRENT REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			OCRCOF	RRES <11:4>			
bit 15							bit 8
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
u = Bit is uncha	inged	x = Bit is unkr	nown	-n = Value at	POR		
'1' = Bit is set		'0' = Bit is clea	ared				

bit 15-8 OCRCORRES <11:4>: Most significant 8 bits of the corrected output current

R-x	R-x	R-x	R-x	U-0	U-0	U-0	U-0
OCRCORRES <3:0>				—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-4 OCRCORRES <3:0>: Least significant 8 bits of the corrected output current

bit 3-0 Unimplemented: Read as '0'

EQUATION 6-24: IOUT FORMULA

$$I_{out} (\text{mA}) = (DEC(OCRCORRES < 11:0>) - 1024) \times \frac{25(\mu \text{V})}{R_{shunt} (\text{m}\Omega)}$$

6.6.52 NVMCTRL REGISTER

The NVMCTRL register is a readable and writable register, which contains several bits used to control the NVM access.

REGISTER 6-52: NVMCTRL: NVM CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	x = Bit is unknown	'0' = Bit is cleared	
'1' = Bit is set			

bit 15-8 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	RSTART	WSTART
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-2 Unimplemented: Read as '0'

bit 1**RSTART:** Set to initiate configuration restore from NVM bit. Self resets after the operation is completed.bit 0**WSTART:** Set to initiate save configuration in NVM bit. Self resets after the operation is completed.

6.6.53 ADCGO REGISTER

The ADCGO register is a readable and writable register containing the ADC start parameters. Starting a conversion is done as follows:

- ensure the power train is stopped (MODECON.DOPM is 01)
- configure ADCON
- configure ADCGO
- start power train (MODECON.DOPM is 02)

REGISTER 6-53: ADCGO: ADC START PARAMETERS

- start the conversion by reading the register set with **ADCGO.ASSEL** bits
- read any of the configured ADC register (IVM-CORRES, OVMCORRES, OCMCORRES, OCRCORRES)
- **Note:** The first reading, used in triggering the conversion should be discarded.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	-	—	—	—
bit 15							bit 8

Legend:

-		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	x = Bit is unknown	'0' = Bit is cleared
'1' = Bit is set		

bit 15-8 Unimplemented: Read as '0'

U-1	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
—	ASSEL	_ <1:0>	—	—	—	CTS	GO
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n = Value at POR
'1' = Bit is set	'0' = Bit is cleared	

bit 7	Unimplemented: Read as '1'
bit 6-5	ASSEL<1:0>: Automatic sampling select
	00 = IVMCORRES
	01 = OVMCORRES
	10 = OCMCORRES
	11 = OCRCORRES
bit 4-2	Unimplemented: Read as '0'
bit 4-2 bit 1	Unimplemented: Read as '0' CTS: Conversion Trigger Configuration bit
	CTS: Conversion Trigger Configuration bit 1 = Manual trigger
	CTS: Conversion Trigger Configuration bit
	CTS: Conversion Trigger Configuration bit 1 = Manual trigger

1 = Conversion in progress

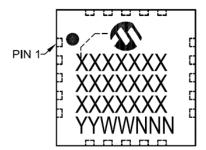
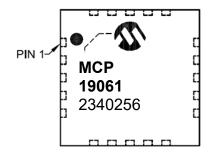
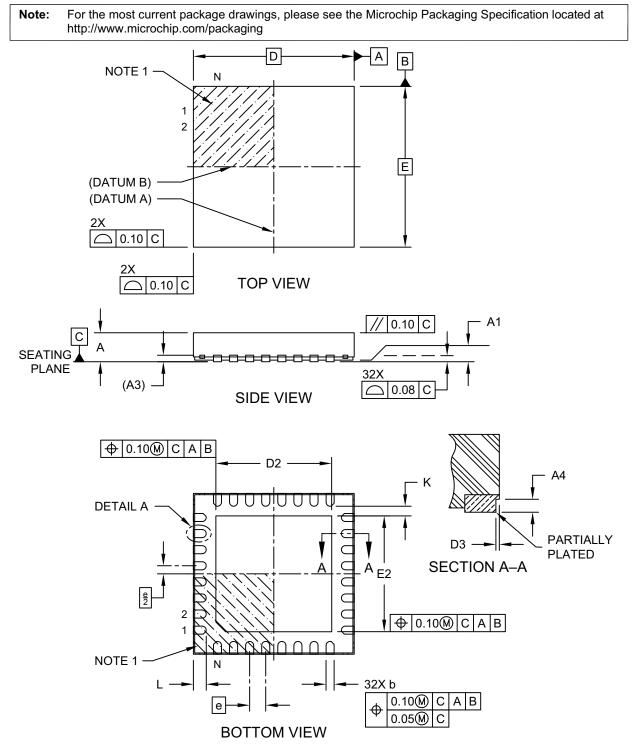

Register	Command	Value	Observations
MODECON	WRITE	101	# Stop switching
ADCON	WRITE	370F	# Enable all ADCs
ADCGO	WRITE	81	# Select IVMCORRES as trigger
MODECON	WRITE	102	# Start switching
IVMCORRES	READ	0x00	# Discard first reading
IVMCORRES	READ	0x4F50	# Input Voltage = 12.6V
IVMCORRES	READ	0x4F40	
OVMCORRES	READ	0x1F30	# Output Voltage = 5V
OVMCORRES	READ	0x1F30	
OCRCORRES	READ	0x4B60	# Output current ~1A
OCRCORRES	READ	0x4B60	

TABLE 6-3: EXAMPLE OF ADC READING SEQUENCE


7.0 PACKAGING INFORMATION

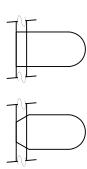
7.1 Package Marking Information

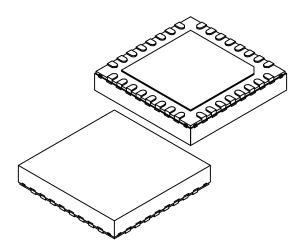
32-Lead VQFN (5x5x1 mm)



Example

Legend	: XXX Y YY WW NNN @3 *	Product Code or Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will over to the next line, thus limiting the number of available s for customer-specific information. Package may or not include the logo.


32-Lead Very Thin Plastic Quad Flat, No Lead Package (RTB) - 5x5 mm Body [VQFN] With 3.6x3.6 mm Exposed Pad and Stepped Wettable Flanks



Microchip Technology Drawing C04-21391 Rev H Sheet 1 of 2

32-Lead Very Thin Plastic Quad Flat, No Lead Package (RTB) - 5x5 mm Body [VQFN] With 3.6x3.6 mm Exposed Pad and Stepped Wettable Flanks

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1 ALTERNATE TERMINAL CONFIGURATIONS

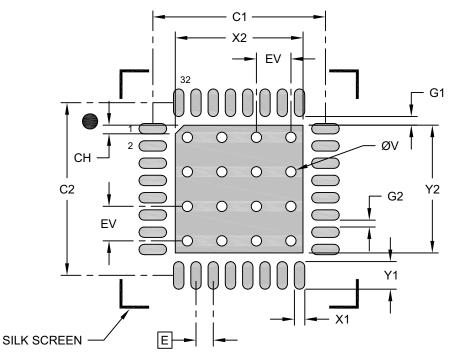
Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Terminals	N	32			
Pitch	е	0.50 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.035	0.05	
Terminal Thickness	A3	0.203 REF			
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.50	3.60	3.70	
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.50	3.60	3.70	
Terminal Width	b	0.20	0.25	0.30	
Terminal Length	L	0.35	0.40	0.45	
Terminal-to-Exposed-Pad	K	0.20	-	-	
Wettable Flank Step Cut Width	D3	-	-	0.085	
Wettable Flank Step Cut Depth	A4	0.10	-	0.19	

Dimensions D3 and A4 above apply to all new products released after November 1, and all products shipped after January 1, 2019, and supersede dimensions D3 and A4 below.

No physical changes are being made to any package; this update is to align cosmetic and tolerance variations from existing suppliers.

Wettable Flank Step Length	D3	0.035	0.06	0.085
Wettable Flank Step Height	A4	0.10	-	0.19

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-21391 Rev H Sheet 2 of 2

32-Lead Very Thin Plastic Quad Flat, No Lead Package (RTB) - 5x5 mm Body [VQFN] With 3.6x3.6 mm Exposed Pad and Stepped Wettable Flanks

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Contact Pitch	Е	0.50 BSC		
Optional Center Pad Width	X2			3.70
Optional Center Pad Length	Y2			3.70
Exposed Pad 45° Corner Chamfer	СН		0.25	
Contact Pad Spacing	C1		5.00	
Contact Pad Spacing	C2		5.00	
Contact Pad Width (X32)	X1			0.30
Contact Pad Length (X32)	Y1			0.80
Contact Pad to Center Pad (X32)	G1	0.25		
Contact Pad to Contact Pad (X28)	G2	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-23391 Rev H

NOTES:

APPENDIX A: REVISION HISTORY

Revision B (October 2024)

• Updated document title to more accurately describe the device.

Revision A (March 2024)

• Initial release of this document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[<u>X]</u> ⁽¹⁾ <u>-X</u> / <u>XXX</u>	Examples:
Device	Tape and Reel Temperature Package Option Range	a) MCP19061-E/RTB: Tube, Extended temperature, 32LD VQFN 5x5 package
Device:	MCP19061: Four Switch Buck-Boost Analog Front End	b) MCP19061T-E/RTB: Tape and Reel, Extended Temperature,
Tape and Reel Option:	Blank = Standard packaging (73/tube) T = Tape and Reel ⁽¹⁾ (3300/reel)	32LD VQFN 5x5 package
Temperature Range:	E = -40° C to $+125^{\circ}$ C (Extended)	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on
Package:	RTB = 32-Lead Plastic Quad Flat, No Lead Package – 5x5x1 mm Body [VQFN]	the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

NOTES:

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2024, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality. ISBN: 978-1-6683-0443-3

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Taiwan - Kaohsiung

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Netherlands - Drunen

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Israel - Hod Hasharon

Tel: 49-8031-354-560

Tel: 972-9-775-5100

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Italy - Milan

Italy - Padova

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Tel: 886-3-577-8366

Tel: 886-7-213-7830

Tel: 66-2-694-1351