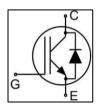


# 650V 75A Insulated Gate Bipolar Transistors


# **FEATURES**

- V<sub>CES</sub>=650V,I<sub>C</sub>=75A(T<sub>C</sub>=100°C)
- · Trench Gate and Field Stop Processes IGBT
- · Low switching power loss
- · Low switching surge and noise
- Low EMI

### **APPLICATIONS**

- UPS
- · Welding machine
- · Solar converters
- · Energy Storage
- · Switching frequency converters

## **SYMBOL**





TO-247

# **ASSEMBLY MESSAGE**

| Product Name       | Package | Packaging |
|--------------------|---------|-----------|
| BXPD-E75T65HD-0000 | TO-247  | Tube      |

## ABSOLUTE MAXIMUM VALUES (T<sub>C</sub>=25°C unless otherwise noted)

| Symbol             | Parameter                                          | Value       | Units |  |
|--------------------|----------------------------------------------------|-------------|-------|--|
| Vces               | Collector-Emitter Voltage                          | 650         | V     |  |
| $V_{GES}$          | Gate-Emitter Voltage                               | ±20         | V     |  |
|                    | Transient Gate-Emitter Voltage (tp ≤10µs, D <0.01) | ±30         | V     |  |
| lc                 | Collector Current@T <sub>C</sub> = 25 °C           | 115         | А     |  |
|                    | Collector Current @Tc = 100 °C                     | 75          | А     |  |
| I <sub>Cplus</sub> | Pulsed Collector Current, tp limited by Tjmax      | 300         | А     |  |
| I <sub>F</sub>     | Diode Continuous Forward Current @Tc = 25 °C       | 115         | А     |  |
|                    | Diode Continuous Forward Current @Tc = 100 °C      | 75          | А     |  |
| I <sub>FM</sub>    | Diode Maximum Forward Current                      | 300         | А     |  |
| P <sub>D</sub>     | IGBT Max. Power Dissipation                        | 333         | W     |  |
|                    | FWD Max. Power Dissipation                         | 250         | W     |  |
| TJ                 | Operating Junction Temperature                     | -40 to +175 | °C    |  |
| $T_{stg}$          | Storage Temperature Range                          | -55 to +175 | °C    |  |

# THERMAL CHARACTERISTICS

| Parameter                                       | Symbol           | Max. | Units |
|-------------------------------------------------|------------------|------|-------|
| Thermal Resistance, Junction to case for IGBT   | R <sub>θJC</sub> | 0.45 | °C/W  |
| Thermal Resistance, Junction to case for Diodes | Rejc             | 0.6  | °C/W  |
| Thermal Resistance, Junction-to-Ambient         | R <sub>θJA</sub> | 39   | °C/W  |



# **ELECTRICAL CHARACTERISTICS** (T<sub>C</sub>=25°C,unless otherwise Noted)

| Symbol               | Parameter                            | Test Conditions                                                        | Value |      |      | 11    |
|----------------------|--------------------------------------|------------------------------------------------------------------------|-------|------|------|-------|
|                      |                                      |                                                                        | Min.  | Тур. | Max. | Units |
| tatic Char           | racteristics                         |                                                                        |       |      |      |       |
| V <sub>(BR)CES</sub> | Collector-Emitter Breakdown Voltage  | V <sub>GE</sub> =0V,I <sub>CE</sub> =0.5mA                             | 650   |      |      | V     |
| I <sub>CES</sub>     | Collector-Emitter Leakage Current    | V <sub>GE</sub> =0V,V <sub>CE</sub> =650V                              |       |      | 200  | μA    |
| I <sub>GES(F)</sub>  | Gate to Emitter Forward Leakage      | V <sub>GE</sub> =+20V,V <sub>CE</sub> =0V                              |       |      | +200 | nA    |
| I <sub>GES(R)</sub>  | Gate to Source Reverse Leakage       | V <sub>GE</sub> =-20V,V <sub>CE</sub> =0V                              |       |      | -200 | nA    |
| V <sub>CE(sat)</sub> | Collector-Emitter Saturation Voltage | I <sub>C</sub> =75A,V <sub>GE</sub> =20V                               |       | 1.7  | 2.1  | V     |
| $V_{\text{GE(th)}}$  | Gate Threshold Voltage               | Ic=250uA,VcE=VGE                                                       | 5     | 5.8  | 6.6  | V     |
| ynamic C             | haracteristics                       |                                                                        |       |      |      |       |
| Cies                 | Input Capacitance                    | \/ 20\/\/ 0\/                                                          |       | 8917 |      | pF    |
| Coes                 | Output Capacitance                   | V <sub>CE</sub> =30V,V <sub>GE</sub> =0V,                              |       | 194  |      |       |
| Cres                 | Reverse Transfer Capacitance         | ⊢f=1MHz                                                                |       | 77   |      |       |
| Qg                   | Total Gate Charge                    | V <sub>CE</sub> =520V,I <sub>C</sub> =75A,                             |       | 327  |      | nC    |
| Q <sub>ge</sub>      | Gate to Emitter Charge               |                                                                        |       | 92.6 |      |       |
| Q <sub>gc</sub>      | Gate to Collector Charge             | ─V <sub>GE</sub> =15V                                                  |       | 115  |      |       |
| witching             | Characteristics                      |                                                                        |       |      |      |       |
| t <sub>d(ON)</sub>   | Turn-on Delay Time                   |                                                                        |       | 69   |      | ns    |
| t <sub>r</sub>       | Rise Time                            | <b>-</b>                                                               |       | 90   |      |       |
| t <sub>d(OFF)</sub>  | Turn-Off Delay Time                  | $V_{CE}$ =400V, $I_{C}$ =75A,<br>$V_{GE}$ =15V, $R_{q}$ =10 $\Omega$ , |       | 271  |      |       |
| t <sub>f</sub>       | Fall Time                            | Inductive Load,                                                        |       | 60   |      |       |
| Eon                  | Turn-On Switching Loss               |                                                                        |       | 2.5  |      |       |
| E <sub>off</sub>     | Turn-Off Switching Loss              |                                                                        |       | 1.2  |      | mJ    |
| Ets                  | Total Switching Loss                 |                                                                        |       | 3.7  |      |       |
| t <sub>d(ON)</sub>   | Turn-on Delay Time                   |                                                                        |       | 70   |      |       |
| t <sub>r</sub>       | Rise Time                            | 100)/1 754                                                             |       | 94   |      |       |
| t <sub>d(OFF)</sub>  | Turn-Off Delay Time                  | $V_{CE}$ =400V, $I_{C}$ =75A,<br>$V_{GE}$ =15V, $R_{g}$ =12 $\Omega$ , |       | 361  |      | ns    |
| t <sub>f</sub>       | Fall Time                            | Inductive Load,                                                        |       | 73   |      |       |
| Eon                  | Turn-On Switching Loss               | Ta=175℃                                                                |       | 4.4  |      |       |
| E <sub>off</sub>     | Turn-Off Switching Loss              |                                                                        |       | 1.5  |      | mJ    |
| E <sub>ts</sub>      | Total Switching Loss                 |                                                                        |       | 5.9  |      |       |

# ELECTRICAL CHARACTERISTICS OF THE DIODE(Tc=25°C,unless otherwise Noted)

| Symbol          | Parameter                           | Test Conditions                         | Rating |      |      |       |
|-----------------|-------------------------------------|-----------------------------------------|--------|------|------|-------|
|                 |                                     |                                         | Min.   | Тур. | Max. | Units |
| V <sub>FM</sub> | Diode Forward Voltage               | I <sub>F</sub> =75A                     |        | 1.5  | 3    | V     |
| Trr             | Reverse Recovery Time               | -I <sub>F</sub> =75A,<br>-di/dt=500A/us |        | 141  |      | ns    |
| $I_{RRM}$       | Diode Peak Reverse Recovery Current |                                         |        | 17   |      | Α     |
| $Q_{rr}$        | Reverse Recovery Charge             |                                         |        | 1.7  |      | μC    |

Note: Pulse width ≤ 300µs, Duty cycle ≤ 2%



# **TYPICAL CHARACTERISTICS**

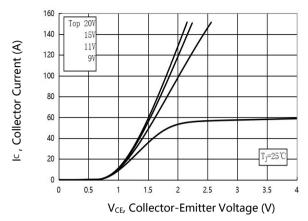



Figure 1. Output Characteristics

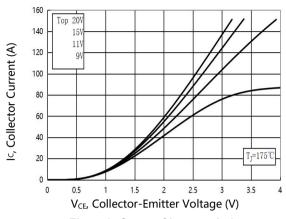



Figure 2. Output Characteristics

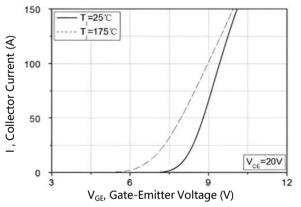



Figure 3. Typical Transfer Characteristics

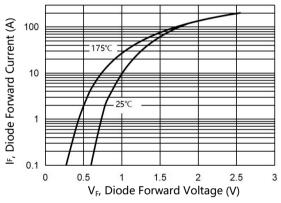



Figure 4. Typical V<sub>F</sub> vs I<sub>F</sub> Characteristics

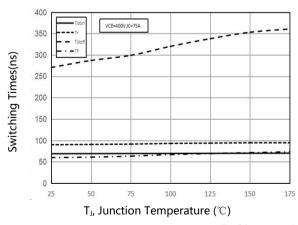



Figure 5. Typical Switching Times vs T<sub>J</sub> Characteristics

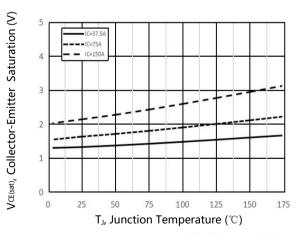



Figure 6. Typical V<sub>CE(sat)</sub> vs T<sub>J</sub> Characteristics



# **TYPICAL CHARACTERISTICS(Cont.)**

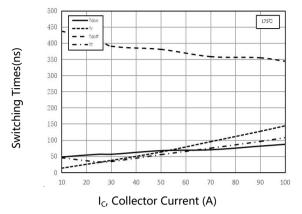



Figure7. Typical Switching Times vs collector current



Figure9. Gate Charge Wave Form

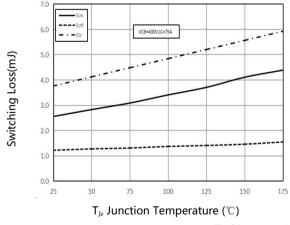



Figure 11. Typical Switching Loss vs T<sub>J</sub> Characteristics

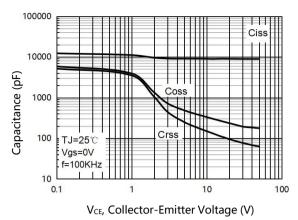



Figure8. Capacitance Characteristics

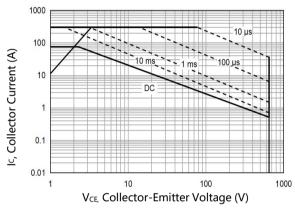



Figure 10. Forward Bias Safe Operating Area

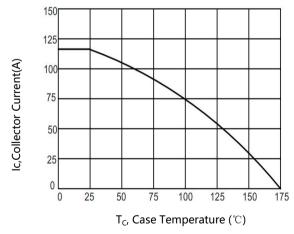
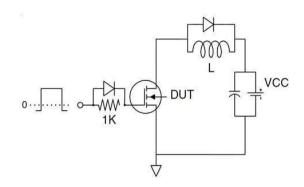
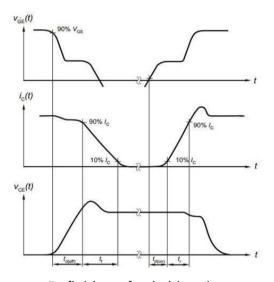



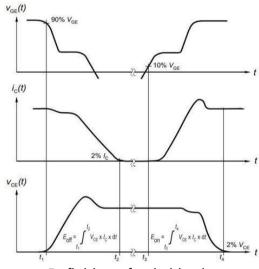

Figure 12. Collector current vs. case temperature



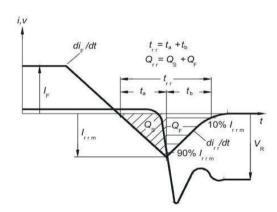
# **TEST CIRCUIT**




**Gate Charge Test Circuit** 


# $V_{DC}$ DUT (Diode) L $C_{\sigma}$ $C_{r}$ $C_$

Switch Time Test Circuit


# **SWITCHING CHARACTERISTICS**



Definition of switching times



Definition of switching losses



Definition of diode switching characteristics



# **Disclaimers:**

Bridgelux has made reasonable commercial efforts to ensure that the information given in this data sheet is correct. However, it must clearly be understood that such information is for guidance only and does not constitute any representation or form part of any offer or contract.

For documents and material available from this data sheet, Bridgelux does not warrant or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product, technology or process disclosed hereunder.

Bridgelux reserves the rights to at its own discretion to make any changes or improvements to this data sheet. Unless said data sheet is incorporated into the formal contract, any customer should not rely on the information as any specification or product parameters duly committed by Bridgelux. Customers are hereby advised to verify that the information contained herein is current and complete before the entering of any contract or acknowledgement of any purchase order. Accordingly, all products specified hereunder shall be sold subject to Bridgelux's terms and conditions supplied at the time of order acknowledgement. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

Bridgelux does not warrant or convey any license either expressed or implied under its patent rights, nor the rights of others. Reproduction of information contained herein shall be only permissible if such reproduction is without any modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. Bridgelux is not responsible or liable for such altered documentation.

Resale of Bridgelux's products with statements different from or beyond the parameters stated by Bridgelux for that product or service voids all express or implied warranties for the associated Bridgelux's product or service and is unfair and deceptive business practice. Bridgelux is not responsible or liable for any such statements.

Bridgelux's products are not authorized for use as critical components in life support devices or systems without the express written approval of Bridgelux. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to theuser.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.