

Image may differ from product. See technical specification for details.

NJ 205 ECJ

Single row cylindrical roller bearing, NJ design

Single row cylindrical roller bearings are designed to accommodate high radial loads in combination with high speeds. Having two integral flanges on the outer ring and one on the inner ring, NJ design bearings can accommodate axial displacement in one direction. An important feature is the separable design, which facilitates mounting and enables the bearing components to be interchanged.

- High radial load carrying capacity
- Low friction
- Long service life
- Locate the shaft axially in one direction
- Separable design

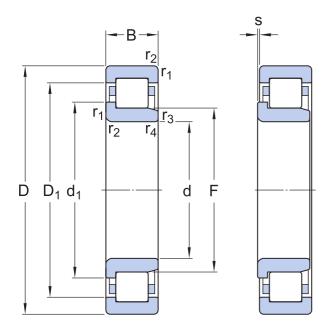
Overview

Dimensions

Bore diameter	25 mm
Outside diameter	52 mm
Width	15 mm

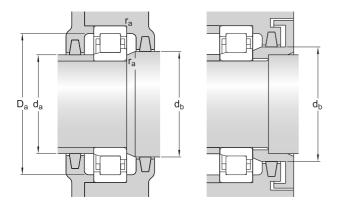
Properties

Bearing part	Complete bearing
Axial displacement capability	In one direction
Number of rows	1
Locating feature, bearing outer ring	None
Bore type	Cylindrical
Cage	Sheet metal
Number of flanges, outer ring	2
Number of flanges, inner ring	1
Loose flange	None
Radial internal clearance	CN
Tolerance class	Normal
Coating	Without
Sealing	Without
Lubricant	None
Relubrication feature	Without


Performance

Basic dynamic load rating	32.5 kN
Basic static load rating	27 kN
Reference speed	15 000 r/min
Limiting speed	16 000 r/min
SKF performance class	SKF Explorer

Logistics


Product net weight	0.14 kg
UNSPSC code	31171505

Technical specification

Dimensions

d	25 mm	Bore diameter
D	52 mm	Outside diameter
В	15 mm	Width
d_1	≈ 34.7 mm	Shoulder diameter of inner ring
D ₁	≈ 43.8 mm	Shoulder diameter of outer ring
F	31.5 mm	Raceway diameter of inner ring
r _{1,2}	min. 1 mm	Chamfer dimension
r _{3,4}	min. 0.6 mm	Chamfer dimension
S	max. 1.3 mm	Permissible axial displacement

Abutment dimensions

da	min. 29.9 mm	Diameter of spacer sleeve
da	max. 30.4 mm	Diameter of spacer sleeve
d _b	min. 36 mm	Diameter of shaft abutment
Da	max. 46.4 mm	Diameter of housing abutment
r _a	max. 1 mm	Radius of fillet

Calculation data

SKF performance class		SKF Explorer
Basic dynamic load rating	С	32.5 kN
Basic static load rating	C_0	27 kN
Fatigue load limit	P_{u}	3.35 kN
Reference speed		15 000 r/min
Limiting speed		16 000 r/min
Minimum load factor	k _r	0.15
Limiting value	е	0.2
Calculation factor	Υ	0.6

Mass

Mass 0.14 kg