

TEZ

high quality transformers for PCBs

BREVE transformers are made in Łódź, under the supervision of experienced technologists. Their quality is appreciated by Polish and foreign companies.

Key features of TEZ transformers by BREVE:

- encased in resin in a vacuum, three-stage process
- polyurethane resin that maintains thermal microplasticity throughout the product's lifetime
- high heat dissipation from the windings to the environment
- three-stage quality control of each transformer-
- short lead times

tme.eu

tme.com

- T transformer
- 0 no-load state
- S regulator
- N nominal value
- \triangle rise, fall, range
- out output
- U voltage [V]
- I current [A]
- S apparent power [VA]
- P active power [W]

Choosing a low voltage power supply transformer.

- 1. Determine U_S, I_{Nout}
- 2. Select a regulator, read its I_{SN} ($I_{SN} \ge I_{Nout}$)
- 3. Read its ΔU_{Smin} , ΔP_{SN}
- 4. Calculate $U_{Amin} = U_S + \Delta U_{Smin}$

$$= \frac{U_{Amin}}{1.41} + m*0.65$$

- $5. \ \text{Calculate U}_{\text{TNmin}} = \frac{\frac{U_{\text{Amin}}}{1,41} + \text{m*0,65}}{0,878} \\ \text{6. Select U}_{\text{TN}} \ \text{voltage from the catalogue (U}_{\text{TN}} \geq U_{\text{TNmin}})$
- 7. Calc. the power of the transformer $S_T = k_{avg}^* (U_{TN} m^*0,65)^* 1,41^* I_{Nout}$
- 8. Select the transformer power from the catalogue $S_{TN} \geq S_{T}$
- 9. Determine the U_{T0} voltage (see table) $U_{T0} = U_{TN} *x$ (x from the table for S_{TN})
- 10. Calculate the U_{Amax} voltage at A U_{Amax} = (1,122* U_{T0} m*0,65)*1,41
- 11. Check whether the regulator meets the requirements:

$$\begin{split} &\Delta U_{Smax} > U_{Amax} - U_{S} \\ &\Delta P_{SN} > \left(U_{Amax} - U_{S}\right)^* I_{Nout} \end{split}$$

- 12. If it does not meet the requirements, choose a stronger regulator.
- 13. If it meets the requirements of capacitance C, determine the capacitor voltage. $U_{CN} > 1.2 U_{Amax}$
- 14. Build the circuit and proceed
- to the actual tests with the specified temperature rise of the windings.

TYPE	S _{TN}	ta [°C]	х
TEZ 0,5	0,5	60B	1,7
TEZ 0,6	0,6	60B	1,6
TEZ 1,5	1,5	60B	1,6
TEZ 2,0	2,0	60B	1,5
TEZ 2,6	2,5	60B	1,8
TEZ 3,0	3,0	60B	1,7
TEZ 4,0	4,0	60B	1,4
TEZ 6,0	6,0	60B	1,4
TEZ 10,0	10,0	60B	1,3
TEZ 16,0	16,0	60B	1,3
TEZ 20,0	20,0	60B	1.2
TEZ 25,0	25,0	60B	1,2
TEZ 30,0	30,0	60B	1,2

