

SEMITRANS[®] 5

Trench IGBT Modules

SKM 300 GARL 066 T

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*

- UPS
- 3 Level Inverter

Remarks

- Case temperature limited to T_c =125°C max
- Recommended T_{op} = -40..+150°C
- T_{vj} is intended as absolut maximuma rating
- Fig.2 is referred to IGBT current capability

Absolute Maximum Ratings T _{case} = 25°C, unless otherwise specified						
Symbol			Values	Units		
IGBT						
V_{CES}	T _j = 25 °C T _i = 175 °C		600	V		
I _C	T _j = 175 °C	T _c = 25 °C	400	Α		
		$T_c = 80 ^{\circ}C$	300	Α		
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 360 V; $V_{GE} \le$ 15 V; V_{CES} < 600 V	T _j = 150 °C	6	μs		
Inverse	Diode					
I _F	T _j = 175 °C	$T_c = 25 ^{\circ}C$	40	Α		
		T _c = 80 °C	30	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		60	Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	160	Α		
Freewhe	eeling Diode					
I_{F}	T _j = 175 °C	$T_c = 25 ^{\circ}C$	400	Α		
		T _c = 80 °C	290	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	2100	Α		
Module						
$I_{t(RMS)}$			500	Α		
T _{vj}			- 40 + 175	°C		
T _{stg}			- 40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _{cas}		T _{case} =	= 25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4.8 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,5	mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			1200	nA	
V _{CE0}		T _j = 25 °C		0,9	1	V	
		T _j = 150 °C		0,85	0,9	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		1,8	3	mΩ	
		$T_j = 150$ °C		2,7	3,8	$m\Omega$	
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V	$T_j = 25^{\circ}C_{\text{chiplev.}}$		1,45	1,9	V	
		$T_j = 150^{\circ}C_{chiplev.}$		1,7	2,1	V	
C _{ies}				18,4		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1,14		nF	
C _{res}				0,54		nF	
Q_G	V _{GE} = -15V+15V			3900		nC	
R _{Gint}	T _j = °C			1		Ω	
t _{d(on)}				140		ns	
t _r	$R_{Gon} = 2.2 \Omega$	V _{CC} = 300V		89		ns	
E _{on}	di/dt = 3400 A/μs	I _C = 300A		3,5		mJ	
t _{d(off)}	$R_{Goff} = 2.2 \Omega$	T _j = 150 °C		433		ns	
t _f	di/dt = 3400 A/μs	V _{GE} = -15V/+15V		116		ns	
E _{off}				10,1		mJ	
R _{th(j-c)}	per IGBT			0,15		K/W	

Trench IGBT Modules

SKM 300 GARL 066 T

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications*

- UPS
- 3 Level Inverter

Remarks

- Case temperature limited to T_c =125°C max
- Recommended T_{op} = -40..+150°C
- T_{vj} is intended as absolut maximuma rating
- Fig.2 is referred to IGBT current capability

Characte	ristics								
Symbol	Conditions		min.	typ.	max.	Units			
Inverse Diode									
$V_F = V_{EC}$	$I_{Fnom} = 30 \text{ A}; V_{GE} = 0 \text{ V}$			1,45	1,7	V			
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$ $T_j = 25 ^{\circ}C$		1,45	1,7	V			
V_{F0}				1	1,1	V			
		T _j = 150 °C		0,9	1	V			
r_{F}		T _j = 25 °C		15	20	mΩ			
		$T_j = 150 ^{\circ}\text{C}$ $T_j = 150 ^{\circ}\text{C}$		18	23,3	mΩ			
I _{RRM}	I _F = 30 A	T _j = 150 °C				Α			
Q _{rr}						μC			
E _{rr}	$V_{GE} = -8 \text{ V}; V_{CC} = 300 \text{ V}$					mJ			
$R_{\text{th(j-c)D}}$	per diode			2		K/W			
	eling diode								
$V_F = V_{EC}$	$I_{Fnom} = 300 \text{ A}; V_{GE} = 0 \text{ V}$			1,35	1,6	V			
		$T_j = 150 ^{\circ}C_{\text{chiplev.}}$ $T_j = 25 ^{\circ}C$		1,3	1,5	V			
V_{F0}				0,9	1	V			
		T _j = 150 °C		0,85	0,9	V			
r_F		T _j = 25 °C		1,5	2	V			
		T _j = 150 °C		1,5	2	V			
I _{RRM}	I _F = 300 A	T _j = 150 °C		194		Α			
Q _{rr}				13		μC			
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V			4		mJ			
$R_{th(j-c)FD}$	per diode			0,28		K/W			
$R_{th(c-s)}$	per module				0,038	K/W			
M_s	to heat sink M6		3		5	Nm			
M _t	to terminals M6		2,5		5	Nm			
w					310	g			
Temperat	ure sensor								
R ₁₀₀	$T_s = 100^{\circ} \text{C } (R_{25} = 5 \text{k}\Omega)$			493±5%		Ω			
						K			

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

4 16-05-2012 DIL © by SEMIKRON

5 16-05-2012 DIL © by SEMIKRON