74HC4538

Dual retriggerable precision monostable multivibrator Rev. 6 — 16 July 2021 Product data sheet

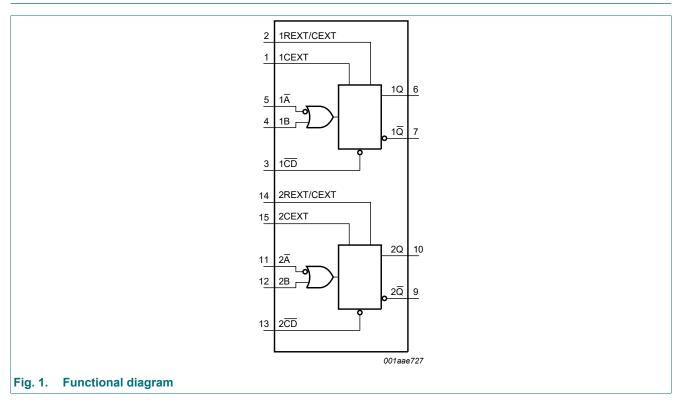
1. General description

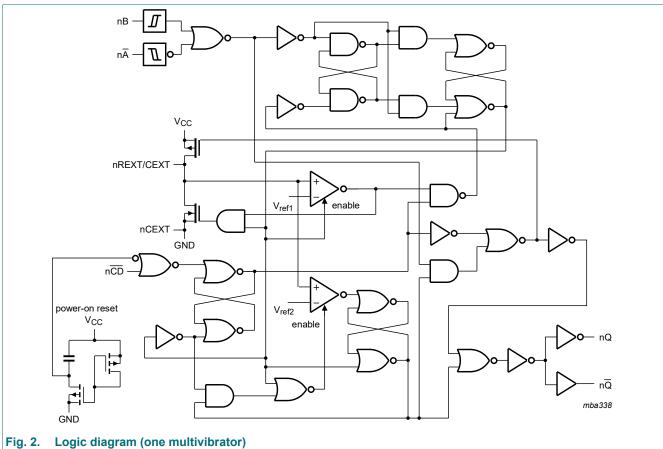
The 74HC4538 is a dual retriggerable-resettable monostable multivibrator. Each multivibrator has two trigger/retrigger inputs ($n\bar{A}$ and nB), a direct reset input ($n\bar{CD}$), two complementary outputs (nQ and $n\bar{Q}$), and two pins (nREXT/CEXT and nCEXT) for connecting the external timing components C_{EXT} and R_{EXT} . Typical pulse width variation over temperature range is \pm 0.2 %. The device may be triggered by either the positive or the negative edges of the input pulse. The duration and accuracy of the output pulse are determined by the external timing components C_{EXT} and R_{EXT} . The output pulse width (T_W) is equal to 0.7 × R_{EXT} × C_{EXT} . The linear design techniques guarantee precise control of the output pulse width. A LOW level at $n\bar{CD}$ terminates the output pulse immediately. Schmitt-trigger action in the trigger inputs makes the circuit highly tolerant to slower rise and fall times. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

2. Features and benefits

- Wide supply voltage range from 2.0 to 6.0 V
- · CMOS low power dissipation
- · CMOS input levels
- · High noise immunity
- Tolerant of slow trigger rise and fall times
- Separate reset inputs
- · Triggering from falling or rising edge
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- · Complies with JEDEC standards
 - JESD8C (2.7 V to 3.6 V)
 - JESD7A (2.0 V to 6.0 V)
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

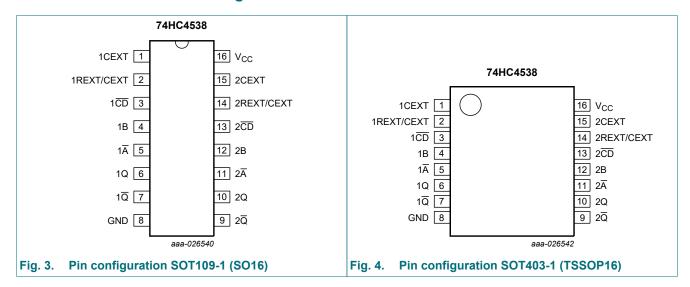
3. Ordering information


Table 1. Ordering information


Type number	Package			
	Temperature range	Name	Description	Version
74HC4538D	-40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HC4538PW	-40 °C to +125 °C		plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1

Dual retriggerable precision monostable multivibrator

4. Functional diagram



Dual retriggerable precision monostable multivibrator

5. Pinning information

5.1. Pinning

5.2. Pin description

Table 2. Pin description

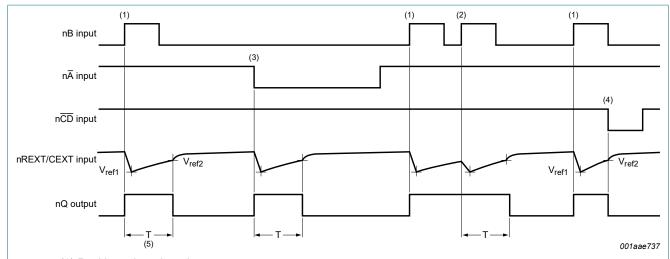
Symbol	Pin	Description
1CEXT, 2CEXT	1, 15	external capacitor connection (always connected to ground)
1REXT/CEXT, 2REXT/CEXT	2, 14	external capacitor/resistor connection
1CD, 2CD	3, 13	direct reset input (active LOW)
1B, 2B	4, 12	input (LOW to HIGH triggered)
1Ā, 2Ā	5, 11	input (HIGH to LOW triggered)
1Q, 2Q	6, 10	output
1Q, 2Q	7, 9	complementary output (active LOW)
GND	8	ground (0 V)
V _{CC}	16	supply voltage

6. Functional description

Table 3. Function table

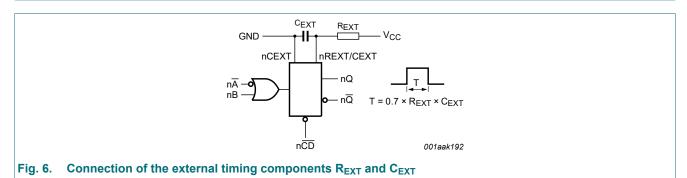
 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = don't \ care;$

 \uparrow = positive-going transition; \downarrow = negative-going transition;


 Π = one HIGH level output pulse, with the pule width determined by C_{EXT} and R_{EXT} ;

 \coprod = one LOW level output pulse, with the pulse width determined by C_{EXT} and R_{EXT} .

	Inputs	Outputs				
nĀ	nB	nCD	nQ	nQ		
\	L	Н	Л	П		
Н	1	Н	Л	П		
Х	X	L	L	Н		


74HC4538

Dual retriggerable precision monostable multivibrator

- (1) Positive edge triggering.
- (2) Positive edge re-triggering (pulse lengthening).
- (3) Negative edge triggering.
- (4) Reset (pulse shortening).
- (5) $T_W = 0.7 \times R_{EXT} \times C_{EXT}$ (see also Fig. 6).

Fig. 5. Timing diagram

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$ [1]	-	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$ [1]	-	±20	mA
Io	output current	$V_{O} = -0.5 \text{ V to } V_{CC} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	+50	mA
I_{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ [2]	-	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74HC4538

^[2] For SOT109-1 (SO16) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C. For SOT403-1 (TSSOP16) package: P_{tot} derates linearly with 8.5 mW/K above 91 °C.

Dual retriggerable precision monostable multivibrator

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		2.0	5.0	6.0	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 2.0 V	-	-	625	ns/V
		V _{CC} = 4.5 V	-	1.67	139	ns/V
		V _{CC} = 6.0 V	-	-	83	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	Unit	
			Min	Тур	Max	Min	Max	Min	Max	
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}	HIGH-level	V _I = V _{IH} or V _{IL}								
	output voltage	I_{O} = -20 μ A; V_{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		I _O = -20 μA; V _{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -20 μA; V _{CC} = 6.0 V	5.9	6.0	-	5.9	-	5.9	-	V
		$I_O = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V
		I_{O} = -5.2 mA; V_{CC} = 6.0 V	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	V _I = V _{IH} or V _{IL}								
	output voltage	I_{O} = 20 μ A; V_{CC} = 2.0 V	-	0	0.1	-	0.1	-	0.1	V
		I _O = 20 μA; V _{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
		I_{O} = 5.2 mA; V_{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1	-	±1	μΑ
		pin nREXT/CEXT; V_1 = 2.0 V or GND; other inputs at V_{CC} or GND; V_{CC} = 6.0 V [1]	-	-	±50	-	±500	-	±500	nA
I _{CC}	supply current $V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$		-	-	8.0	-	80	-	160	μA

Dual retriggerable precision monostable multivibrator

Symbol	Parameter	Conditions		25 °C		-40 °C to	+85 °C	-40 °C to	Unit	
			Min	Тур	Max	Min	Max	Min	Max	
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

^[1] This measurement can only be carried out after a trigger pulse is applied.

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 9.

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	Unit	
			Min	Typ[1]	Max	Min	Max	Min	Max	
t _{PLH}	LOW to HIGH	nĀ, nB to nQ; see Fig. 7								
	propagation delay	V _{CC} = 2.0 V	-	85	265	-	330	-	400	ns
	delay	V _{CC} = 4.5 V	-	31	53	-	66	-	80	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	27	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	25	45	-	56	-	68	ns
		nCD to nQ; see Fig. 7								
		V _{CC} = 2.0 V	-	83	265	-	340	-	400	ns
		V _{CC} = 4.5 V	-	30	53	-	68	-	80	ns
	V _{CC} = 6.0 V		-	24	45	-	58	-	68	ns
t _{PHL}	HIGH to LOW	nĀ, nB to nŌ; see <u>Fig. 7</u>								
	propagation delay	V _{CC} = 2.0 V	-	83	265	-	330	-	400	ns
	delay	V _{CC} = 4.5 V	-	30	53	-	66	-	80	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	27	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	24	45	-	56	-	68	ns
		nCD to nQ; see Fig. 7								
		V _{CC} = 2.0 V	-	80	265	-	330	-	400	ns
		V _{CC} = 4.5 V	-	29	53	-	66	-	80	ns
		V _{CC} = 6.0 V	-	23	45	-	56	-	68	ns
t _t	transition time	nQ and n \overline{Q} ; see Fig. 7 [2]								
		V _{CC} = 2.0 V	-	19	75	-	95	-	119	ns
		V _{CC} = 4.5 V		7	15	-	19	-	22	ns
		V _{CC} = 6.0 V	-	6	13	-	16	-	19	ns

Dual retriggerable precision monostable multivibrator

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	Unit	
			Min	Typ[1]	Max	Min	Max	Min	Max	
t _W	pulse width	nA LOW; see Fig. 8								
		V _{CC} = 2.0 V	80	17	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	6	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	5	-	17	-	20	-	ns
		nB HIGH; see Fig. 8								
		V _{CC} = 2.0 V	80	17	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	6	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	5	-	17	-	20	-	ns
		nCD LOW; see Fig. 8								
		V _{CC} = 2.0 V	80	19	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	7	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	6	-	17	-	20	-	ns
		nQ and nQ HIGH or LOW; see <u>Fig. 8</u>								
		V_{CC} = 5.0 V; C_{EXT} = 0.1 µF; R_{EXT} = 10 k Ω	630	700	770	602	798	595	805	μs
t _{rec}	recovery time	nCD to nA, nB; see Fig. 8								
		V _{CC} = 2.0 V	35	6	-	45	-	55	-	ns
		V _{CC} = 4.5 V	7	2	-	9	-	11	-	ns
		V _{CC} = 6.0 V	6	2	-	8	-	9	-	ns
t _{rtrig}	retrigger time	$n\overline{A}$, nB; see Fig. 8; $X = C_{EXT} / (4.5 \times V_{CC})$								
		V _{CC} = 2.0 V	-	455+X	-	-	-	-	-	ns
		V _{CC} = 4.5 V	-	80+X	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	55+X	-	-	-	-	-	ns
R _{EXT}	external	V _{CC} = 2.0 V	10	-	1000	-	-	-	-	kΩ
	timing resistor	V _{CC} = 5.0 V	2	-	1000	-	-	-	-	kΩ
C _{EXT}	external timing capacitor					no li	mits			
C _{PD}	power dissipation capacitance	per multivibrator; [3] $V_I = GND$ to V_{CC}	-	136	-	-	-	-	-	pF

- Typical values are measured at nominal supply voltage (V_{CC} = 3.3 V and V_{CC} = 5.0 V).
- t_t is the same as t_{THL} and t_{TLH} . C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

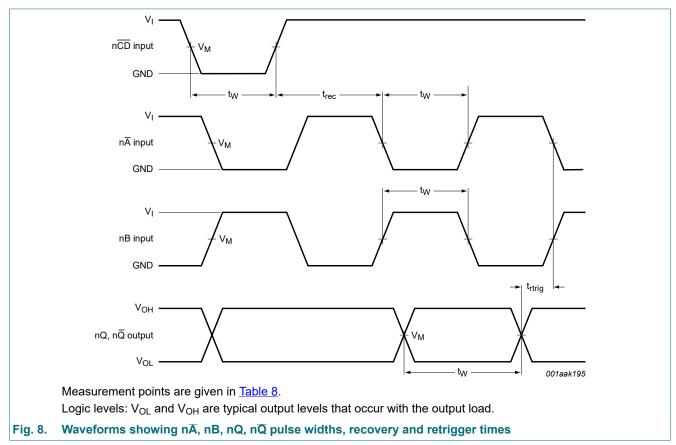
 $P_D = C_{PD} \times V_{CC}^{2} \times f_i + \Sigma(C_L \times V_{CC}^{2} \times f_o) + 0.48 \times C_{EXT} \times V_{CC}^{2} \times f_o + D \times 0.8 \times V_{CC} \text{ where:}$

f_i = input frequency in MHz;

f_o = output frequency in MHz;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs; C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;


D = duty cycle factor in %;

C_{EXT} = external timing capacitance in pF.

Dual retriggerable precision monostable multivibrator

10.1. Waveforms and test circuit



Dual retriggerable precision monostable multivibrator

Table 8. Measurement points

Input	Output		
V _M	V _M	V _X	V _Y
0.5V _{CC}	0.5V _{CC}	0.1V _{CC}	0.9V _{CC}

Test data is given in Table 9.

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

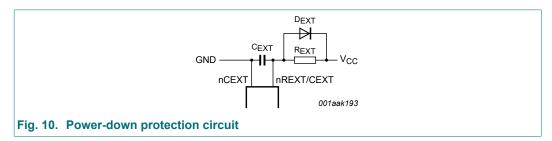
 C_L = Load capacitance including jig and probe capacitance.

 R_L = Load resistance.

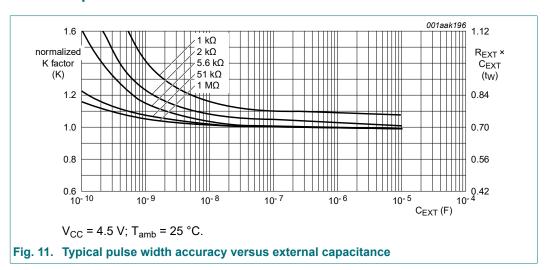
S1 = Test selection switch

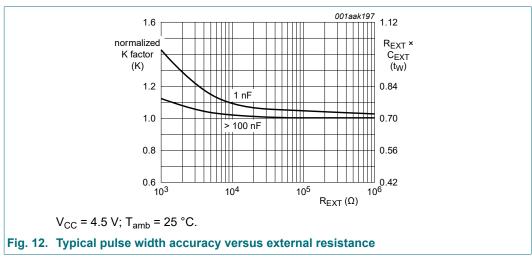
Fig. 9. Test circuit for measuring switching times

Table 9. Test data


Input		Load	S1 position		
VI	t _r , t _f	CL	R _L	t _{PHL} , t _{PLH}	
V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	

Dual retriggerable precision monostable multivibrator


11. Application information


11.1. Power-down considerations

A large capacitor (C_{EXT}) may cause problems when powering-down the monostable due to energy stored in this capacitor. When a system containing this device is powered-down or rapid decrease of V_{CC} to zero occurs, the monostable may sustain damage, due to the capacitor discharging through the input protection diodes. To avoid this possibility, use a damping diode (D_{EXT}) preferably a germanium or Schottky type diode able to withstand large current surges and connect as shown in Fig. 10

11.2. Graphs

Dual retriggerable precision monostable multivibrator

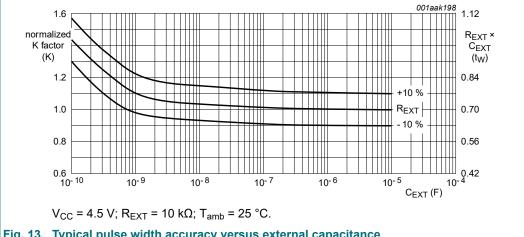


Fig. 13. Typical pulse width accuracy versus external capacitance

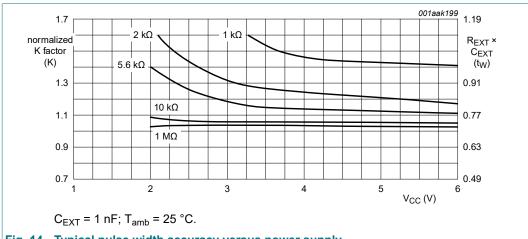
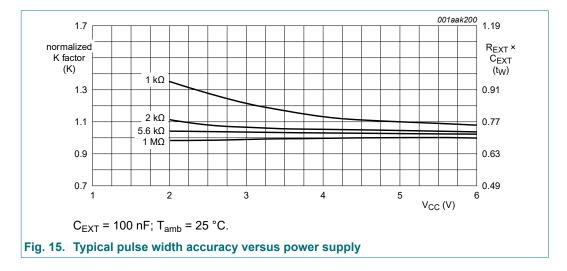



Fig. 14. Typical pulse width accuracy versus power supply

Dual retriggerable precision monostable multivibrator

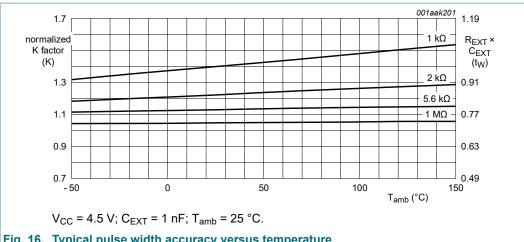
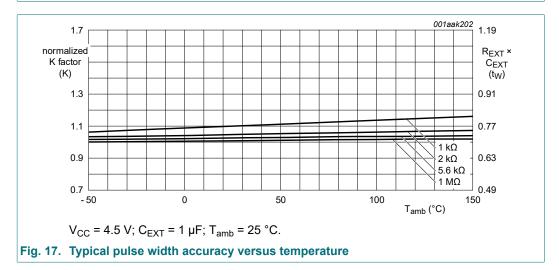
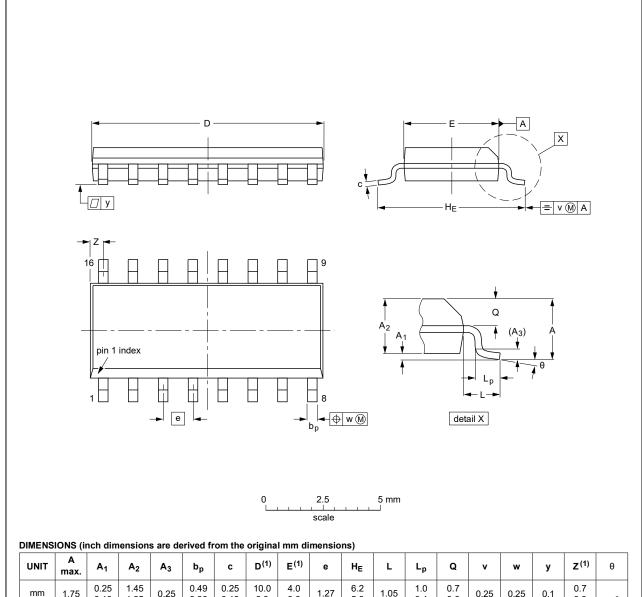



Fig. 16. Typical pulse width accuracy versus temperature



Dual retriggerable precision monostable multivibrator

12. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	max.	A ₁	A ₂	A ₃	b _p	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	V	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.39 0.38	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

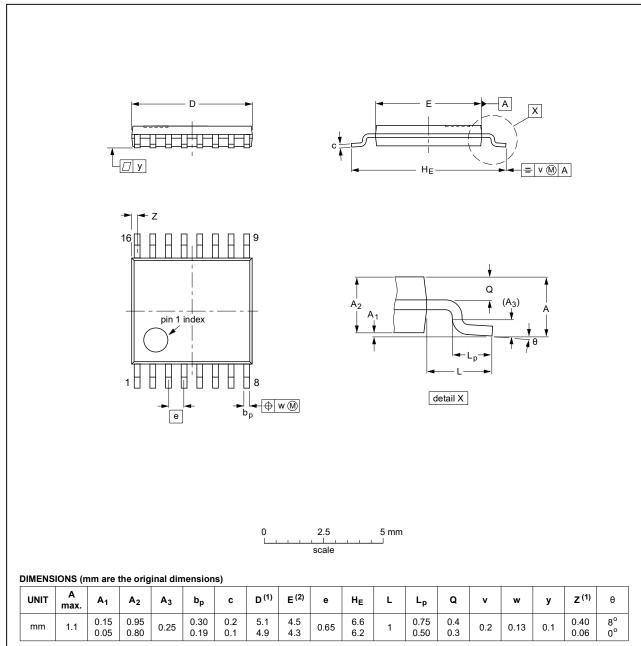

OUTLINE	REFERENCES			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT109-1	076E07	MS-012				99-12-27 03-02-19

Fig. 18. Package outline SOT109-1 (SO16)

Dual retriggerable precision monostable multivibrator

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE	REFERENCES			EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT403-1		MO-153				99-12-27 03-02-18

Fig. 19. Package outline SOT403-1 (TSSOP16)

Dual retriggerable precision monostable multivibrator

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74HC4538 v.6	20210716	Product data sheet	-	74HC4538 v.5	
Modifications:	Section 2 up	 Type number 74HC4538DB (SOT338-1/SSOP16) removed. Section 2 updated. Section 7: Derating values for P_{tot} total power dissipation updated. 			
74HC4538 v.5	20170317	Product data sheet	-	74HC_HCT4538 v.4	
Modifications:		Type numbers 74HCT4538D, 74HCT4538DB, 74HCT4538PW removed. Table 6: Maximum input leakage current for pins 1REXT/CEXT and 2REXT/CEXT changed.			
74HC_HCT4538 v.4	20160224	Product data sheet	-	74HC_HCT4538 v.3	
Modifications:	Type number	Type numbers 74HC4538N and 74HCT4538N (SOT38-4) removed.			
74HC_HCT4538 v.3	20090608 Product data sheet - 74HC_HCT4538_CNV v.2				
Modifications:	guidelines of Legal texts Pin names of Section Section Section Family char Test circuit of Quick reference	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. Legal texts have been adapted to the new company name where appropriate. 			
74HC_HCT4538_CNV v.2	19970902	Product specification	-	-	

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- 2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

Dual retriggerable precision monostable multivibrator

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74HC4538

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2021. All rights reserved

Dual retriggerable precision monostable multivibrator

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	
4. Functional diagram	
5. Pinning information	
5.1. Pinning	
5.2. Pin description	
6. Functional description	
7. Limiting values	
8. Recommended operating conditions	
9. Static characteristics	
10. Dynamic characteristics	
10.1. Waveforms and test circuit	
11. Application information	
11.1. Power-down considerations	
11.2. Graphs	
12. Package outline	
13. Abbreviations	
14. Revision history	
15. Legal information	

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 16 July 2021

[©] Nexperia B.V. 2021. All rights reserved